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Background

Deep Learning (DL)

O A machine learning technigue using “Deep” Neural Network
O DL is achieving state-of-the-art in large machine learning area
O Training DNN with huge dataset requires large scale computation

O eg. 15-layer CNN training takes 8.2 days on 16 nodes (48 GPUs)
of TSUBAME2.5

O Researchers have to train DNN for several times to optimize
DNN structure and hyper-parameters by hand
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Background
Stochastic Gradient Descent

O An optimization method to update NN weights Wl with
summation of gradient VE, of m samples (i.e. mini-batch)

O Suitable for DL, in which computing global gradient V E requires
hundreds PFLOP
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Background

Asynchronous Stochastic Gradient Descent (ASGD)

O GPU threads independently compute gradient of distinct
samples, while update threads update DNN weights
asynchronously
O ASGD may speed-up the training

O ASGD may produce worse generalization error
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Background

Mini-batch Size and Staleness

O Staleness: # of updates done within one gradient
computation

O Existing researches showed that the error is increased by larger
mini-batch size and staleness

O There was no way of knowing these statistics in advance
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Approach and Confribution

O Approach: Proposing a performance model for an ASGD deep
learning system, which considers probability distribution of mini-
batch size and staleness
O Takes CNN structure and machine specifications as input

O Predicts fime to sweep entire dataset (epoch time) and the
distribution of the stafistics

O Contribution

O Our model predicts epoch time, average mini-batch size and
staleness with 5%, 9%, 19% error in average respectively on several
supercomputers

O Our model steadily choose the fastest machine configuration that
nearly meets a target mini-batch size

O Our model predicts how DL scales with upcoming hardware
specification

O FP16, EDR InfiniBand



SPRINT Overview

O SPRINT is a data-parallel ASGD application to train CNN with GPUs

O GPU threads compute gradient of randomly-picked samples and
accumulate it to the host memory

O Update threads execute MPI all-reduce to update the weights
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Proposed Performance Model

Overview

1. Takes # of nodes (N, ). # of GPUs (Ngp;). CNN structure as input
parameters

2. Predicts execution fime of one iteration of GPU threads and update
threads (Tepy: Typaare)

3. Predicts
O epochtime (Tg,,.,) as a constant

O Mini-batch size (Nyipuen) AN staleness (Ng,....) A stfochastic variables
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Proposed Performance Model

CNN Structure

O The model supports CNNs with convolution layers, optional
max-pooling and fully-connected layers

O Example: VGG[13] Layero Layer I-1 overs
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Proposed Performance Model

Execution Time of Thread lteration

O Execution time of thread iteration is divided into several tiny
sub-models, each representing time complexity of its part

O Coefficients are fitted with the least squares method

TGPU = Loadlmage + TComputeGradient + TUpdateGradient ...
TUpdate = L SumGradient + TAllreduce + TUpdateWeights + ...
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Proposed Performance Model

Execution Time of Gradient Computation

O One gradient computation iteration is consisted of various
CUDA kernels and SGEMM

O 15-layer CNN calls more than 100 kernels/GEMMs per iteration
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Proposed Performance Model

Execution Time of Gradient Computation

O Computation time is modeled with summation of consisting
kernels

L.
TComputeGradient — Z{TimQCol(l) + Tconvolution(l) + Tactivation(l)} + -
=1

O Model for CUDA Kernel: Linear function of its computation
complexity Ve P—— Coefficients are fitted with
12 2
Tim2cot(l) = ax;”c*my—1 Ngubbateh + the least square method
O Model for GEMM: Interpolation of measured computation time
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Proposed Performance Model

Predicting Distribution of Mini-batch Size

Nnode X Ngpru

O NMinibatch — NSubbatch Z (Yn + \_QJ)

n=1

O Where q — TUpdate/TGPU, Yn ~ B(laq — LQJ)
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Proposed Performance Model

Predicting Distribution of Staleness

O NStaleness = Z+ I_TJ +1
O Where r =Tgpv/Tupdate, £ ~ B(1,r — |r])
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Proposed Performance Model

Predicting Average Statistics

O Three outputs are computed from thread iteration time and
machine configurations

# of Samples

\Nrie|x | Tapu
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# of GPUs Time to process one
sample on a GPU

N NNode X NGPU X NSubbatch X TUDdate

Minibatch — -
# of GPUs Topy Time to update
weights

Frequency to process
one sample on a GPU
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Evaluation

O The proposed performance model is evaluated on TSUBAME
2.5 and TSUBAME-KFC/DL

O Up to 64 nodes of TSUBAME 2.5, or 16 nodes of TSUBAME-KFC/DL
are used for evaluation

TSUBAME 2.5 TSUBAME-KFC/DL
42

1408
Intel Xeon X5670 x 2 Intel Xeon E5-2620v2 x 2
NVIDIA Tesla K20X x 3 NVIDIA Tesla K80 x 4

# nodes
CPU
(e]4V]

4X QDR InfiniBand x 2 4X FDR InfiniBand
ICC 14.02 ICC 14.0.0
CUDA 7.0

MPI MVAPICH?2 2.0rc
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# Parameters (1076)

Evaluation

O Three 15-17 layers CNNs are used for evaluation

O Coefficients of the model are fitted with CNN-A and subsets of training

configurations (Ny, ... Ne.uspaen)

O Prediction erroris measured with CNN-A, B, and C
O ILSVRC2012 dataset is used for evaluation
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Evaluation

Execution Time of Gradient Computation

O In all CNNs and Ng,,,...» the prediction error was lower than
12% on average

Measured (Solid) and Predicted (Dashed) Gradient Computation Time

of Three CNNs on Two GPUs
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Evaluation
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Evaluation

Distribution of Mini-batch Size and Staleness

O Our model successfully predicts the distribution of mini-batch size
and staleness

O The average prediction error was 9% and 19% respectively

Distribution of mini-batch size and staleness of CNN-A on TSUBAME-KFC/DL

Mini-batch size Staleness
7 4 nodes Nsubbatch = 1 % : Nsubbatch = 1
2 2 c
3 ° 8 nodes < | Predicted
< - o
= A] 6 nodes . Measured
8 o |
o : T T T T~ © T T T
100 200 300 400 500 600 0 2 4 6 8 10
Nsubbatch = 11 7
- © |
. o
% ° Predicted .
3 o | \ <
o S
m ] —
8 4 o
d o

0 100 200 300 400

NMinibatch

Meosured Nstaleness -




Evaluation

Parameter Search for Target Mini-batch Size

O Our model steadily chose the fastest configuration from subset
for arbitrary target mini-batch size 138+25%

Predicted Epoch Time (Contour), Mini-batch
Size (Brightness) and Staleness (Hue) of CNN-A

Predicted Ranking of Configuration for on TSUBAME-KFC/DL
Shortest Epoch Time[s] of CNN-A on Two -
Supercomputers
5
- Predicted [N
Keo]
| KFC | 2025 1779 Ae
8 1 2316 2226 o
12.5 [ 5 2725 2614
12.5 [P 4 2910 2840
m 32 ] 3] 78 3227 . NStaIeness =1
ini = = N aenes:s=2
B3 ¢ 3 s aw el B R e
B Nuinibateh = 10° Nstaleness =
O Nuinibateh = 10° Nstaleness = 5
O Nuinivaten = 10* ™ Nstaleness = 6
u NStaIeness =7
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Evaluation

Performance Prediction for Future Hardware

O We predicted the optimal configurations within mini-batch size
138+25% for future hardware improvement

O FP16: Computation time is halved and max Ng,,,...., IS doubled
O EDR IB: Communication time of all-reduce is divided by 12.5/7
O 4xFDR InfiniBand (7 GB/s) = 4xEDR InfiniBand (12.5 GB/s)

O Inferconnect performance is important as well as GPU
performance to accelerate DL

The Optimal Predicted Configurations of CNN-A on TSUBAME-KFC/DL

Average :
8 8 .

/ 22 170.1 1462 1.22
EDR IB 12 11 166.6 1245 1.43

FP16 + EDR IB 8 15 171.5 1128 1.58
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Related Work

O Performance modeling for parameter-server based DL system
on CPU cluster [Yan et al, SIGKDD, 20135]

O The authors proposed performance model and optimizer to
minimize DNN fraining time for CPU cluster

O Our performance model predicts distribution of mini-batch size
and staleness as well as training time

O Relation between mini-batch size, staleness and
generalization error [Gupta et al, 2015]

O The authors proposed an asynchronous parallel DL system Rudra

O The authors empirically showed that generalization error of frained
DNN is affected by staleness as well as mini-batch size

O Universal knowledge about relation among mini-batch size,
staleness, generalization error and training time is still unclear
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Conclusion and Future Work

O Conclusion

O Our model predicts epoch time, average mini-batch size and
staleness with 5%, 9%, 19% error in average respectively on several
supercomputers

O Our model steadily choose the fastest machine configuration that
nearly meets a target mini-batch size

O Future Work

O Improving the model to support model-parallelism and more
general DNN architecture

O Combining empirical fraining results for more advanced
prediction
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