
Predicting Statistics of Asynchronous SGD
Parameters for a Large-Scale Distributed Deep
Learning System on GPU Supercomputers�

Yosuke Oyama1,a) Akihiro Nomura1 Ikuro Sato2 Hiroki Nishimura3
Yukimasa Tamatsu3 Satoshi Matsuoka1

1 Tokyo Institute of Technology

2 DENSO IT LABORATORY, INC.

3 DENSO CORPORTATION

a) oyama.y.aa@m.titech.ac.jp

��

Background
Deep Learning (DL)�

!  A machine learning technique using “Deep” Neural Network
!  DL is achieving state-of-the-art in large machine learning area

!  Training DNN with huge dataset requires large scale computation

!  eg. 15-layer CNN training takes 8.2 days on 16 nodes (48 GPUs)
of TSUBAME2.5

!  Researchers have to train DNN for several times to optimize
DNN structure and hyper-parameters by hand

��

Imput (Image)
(Reference: http://image-net.org/) �

�

Output (Classification) �

Barn swallow = 0.95
Police dog = 0.03
Water beetle = 0.01�

…
�

Neural Network �

Background
Stochastic Gradient Descent�

!  An optimization method to update NN weights W(t) with
summation of gradient �Ei of m samples (i.e. mini-batch)
!  Suitable for DL, in which computing global gradient �E requires

hundreds PFLOP �

��

W (t+1) =W (t) −ηΣi=1
m ∇Ei (W

(t)) E�

E1�

-η�E1�

E2�
-η�E2�

E3�

-η�E3�

W(t) �

m = 3�

-ηΣi �Ei�

W(t+1)�

Background
Asynchronous Stochastic Gradient Descent (ASGD)�

!  GPU threads independently compute gradient of distinct
samples, while update threads update DNN weights
asynchronously
!  ASGD may speed-up the training

!  ASGD may produce worse generalization error

��

Time�

W (t+1) =W (t) −ηΣi∇Ei
(t) W (t+2) =W (t+1) −ηΣi∇Ei

(t+1) W (t+3) =W (t+2) −ηΣi∇Ei
(t+2)

GPU
Thread �

Update
Thread �

∇Ei
(t+1) ∇Ei

(t+2) ∇Ei
(t+3)W (t+1) W (t+2)

Timeline of ASGD Training �

Background
Mini-batch Size and Staleness�

!  Staleness: # of updates done within one gradient
computation

!  Existing researches showed that the error is increased by larger
mini-batch size and staleness
!  There was no way of knowing these statistics in advance

��

E�

W(t) �
-ηΣi �Ei�

W(t+1)�
W(t+1)�

-ηΣi �Ei�

W(t+3)�

W(t+2)�

Twice updates
within gradient
computation�

Staleness=0 �

Staleness=2 �

Mini-batch�

Approach and Contribution�
!  Approach: Proposing a performance model for an ASGD deep

learning system, which considers probability distribution of mini-
batch size and staleness
!  Takes CNN structure and machine specifications as input
!  Predicts time to sweep entire dataset (epoch time) and the

distribution of the statistics

!  Contribution
!  Our model predicts epoch time, average mini-batch size and

staleness with 5%, 9%, 19% error in average respectively on several
supercomputers

!  Our model steadily choose the fastest machine configuration that
nearly meets a target mini-batch size

!  Our model predicts how DL scales with upcoming hardware
specification
!  FP16, EDR InfiniBand

��

SPRINT Overview �

!  SPRINT is a data-parallel ASGD application to train CNN with GPUs
!  GPU threads compute gradient of randomly-picked samples and

accumulate it to the host memory

!  Update threads execute MPI all-reduce to update the weights

	�

Node �
CPU�

Update thread � GPU thread�

GPU�

Interconnect�

SSD �

GPU�

Part of dataset

Weights CNN
model

Weights CNN
model �

GPU thread�

�gradient

�gradient
Allreduce

send buffer

Latest weights

Momentum etc.

Mutex �

Data�

read �accumulate�

fetch�

consume�

MPI all-reduce�

Proposed Performance Model
Overview�

1.  Takes # of nodes (NNode), # of GPUs (NGPU), CNN structure as input
parameters

2.  Predicts execution time of one iteration of GPU threads and update
threads (TGPU, TUpdate)

3.  Predicts
!  epoch time (TEpoch) as a constant
!  Mini-batch size (NMinibatch) and staleness (NStaleness) as stochastic variables

�

Machine
configurations
(NNode, NGPU, …)

CNN structure
(L, {xl}, {ml}, …) �

TGPU Model �

TUpdate Model �

TEpoch Model �

NStaleness Model �

Inputs� Outputs�

NMinibatch Model �

Proposed Performance Model
CNN Structure�

!  The model supports CNNs with convolution layers, optional
max-pooling and fully-connected layers
!  Example: VGG[13]�

��

Parameter� Meaning �
L � # of all layers �
LC� # of convolution layers�
xl� Map size of l-th layer �
ml� # of maps of l-th layer �
c� Convolution filter size�
pl� Max-pooling grid size of l-th layer �

Convolution� Max-pooling�

Layer l-1 � Layer l�

…�

…�

Layer 0�

Softmax�

Layer L �Layer LC�

…�

FC�

xl−1

xl−1

xl
xl
mlmlml−1

c
c pl

pl

xl−1 − c+1
x0

x0

m0

mL

xLc

mLc

xLc xLc
2mLc

Vectorize�

Proposed Performance Model
Execution Time of Thread Iteration�

!  Execution time of thread iteration is divided into several tiny
sub-models, each representing time complexity of its part
!  Coefficients are fitted with the least squares method

���

Time�

W (t+1) =W (t) −ηΣi∇Ei
(t) W (t+2) =W (t+1) −ηΣi∇Ei

(t+1) W (t+3) =W (t+2) −ηΣi∇Ei
(t+2)

GPU
Thread �

Update
Thread �

TGPU

TUpdate

TGPU = TLoadImage + TComputeGradient + TUpdateGradient + …
TUpdate = TSumGradient + TAllreduce + TUpdateWeights + …�

Proposed Performance Model
Execution Time of Gradient Computation�

!  One gradient computation iteration is consisted of various
CUDA kernels and SGEMM
!  15-layer CNN calls more than 100 kernels/GEMMs per iteration�

���

NSubbatch

T C
om

pu
te

G
ra

di
en

t [
s]

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

1 2 3 4 5 6 7

dedx_conv
dedb
dedw
convolution
activation_B
pooling_B
im2col_B
dedb(L)
softmax_B
softmax
bias
pooling
activation
im2col

Breakdown of Measured Gradient Computation Time of
15-layer CNN on NVIDIA Tesla K80�

GEMM�

CUDA
kernel �

TComputeGradient =
LcX

l=1

{Tim2col(l) + Tconvolution(l) + Tactivation(l)}+ · · ·

+
LcX

l=1

{Tdedx conv(l) + Tim2col BP (l) + Tactivation BP (l)}

Tim2col(l) = ↵x0
l
2
c2ml�1NSubbatch + � (1)

Tconvolution(l) =
X

m,n,k2{0,1}

↵m,n,k(x
0
l
2
NSubbatch)

mml
n(c2ml�1)

k (2)

Proposed Performance Model
Execution Time of Gradient Computation�

!  Computation time is modeled with summation of consisting
kernels

!  Model for CUDA Kernel: Linear function of its computation

complexity

!  Model for GEMM: Interpolation of measured computation time�

���

TComputeGradient =
LcX

l=1

{Tim2col(l) + Tconvolution(l) + Tactivation(l)}+ · · ·

+
LcX

l=1

{Tdedx conv(l) + Tim2col BP (l) + Tactivation BP (l)}

Tim2col(l) = ↵x0
l
2
c2ml�1NSubbatch + � (1)

Tconvolution(l) =
X

m,n,k2{0,1}

↵m,n,k(x
0
l
2
NSubbatch)

mml
n(c2ml�1)

k (2)

Combination of Internal
Kernels (Left) and
Computation time (Right)
of cublasSgemm on
NVIDIA Tesla K80 �0

5

10

2
4
6
8
010

0 5 10 15 20

0

5

10

2
4
6
8
010

0 5 10 15 20

log2(m) �

log2(n) �

log2(k) �

log2(m) �

log2(n) �

log2(k) �

●

●

●

●

●

●

●

●

●

2−16 s
2−14 s
2−12 s
2−10 s
2−8 s
2−6 s
2−4 s
2−2 s
20 s

TComputeGradient =
LcX

l=1

{Tim2col(l) + Tconvolution(l) + Tactivation(l)}+ · · ·

+
LcX

l=1

{Tdedx conv(l) + Tim2col BP (l) + Tactivation BP (l)}

Tim2col(l) = ↵x0
l
2
c2ml�1NSubbatch + � (1)

Tconvolution(l) =
X

m,n,k2{0,1}

↵m,n,k(x
0
l
2
NSubbatch)

mml
n(c2ml�1)

k (2)

Coefficients are fitted with
the least square method�

Time�

GPU
thread �

Update
thread �

TUpdate

Yn =1Yn = 0

NMinibatch = 2

q!" #$= 2

TGPU TGPU TGPU TGPU TGPU

TUpdate
NMinibatch = 3

Proposed Performance Model
Predicting Distribution of Mini-batch Size�

! 

!  Where�

���

Algorithm 2 Update Thread Loop
1: repeat

2: for t = 1 to NGPU do

3: lock GradBuft mutex
4: if GradBuft has been updated then

5: if t = 1 then

6: SendBuf GradBuft
7: else

8: SendBuf SendBuf + GradBuft
9: end if

10: else if t = 1 then

11: SendBuf 0
12: end if

13: unlock GradBuft mutex
14: end for

15: OldWeights (WeightsBuf)n
16: SendBuf SendBuf + (OldWeights)n +

⌫(DeltaWeights)n
17: RecvBuf MPI Allreduce(SendBuf)
18: DeltaWeights (RecvBuf)n � OldWeights
19: lock WeightsBuf mutex
20: WeightsBuf RecvBuf
21: unlock WeightsBuf mutex
22: until the process is terminated

TABLE IV
COMPONENTS OF UPDATE THREAD LOOP

Component Line Number Model
in Algorithm 2

LockGradient U 3 NGPU ⇥ TUpdateGradient
2

2⇥TGPU
SumGradient 4 - 12 ↵NParamX1

(X1 ⇠ B(NGPU ,
min(TUpdate/TGPU , 1))

OperateVectors 15, 16, 18 ↵NParam/NNode
Allreduce 17 TBarrier+

(↵ log2(NNode) + �)⇥NParam

LockWeights U 19 NGPU ⇥ TFetchWeights
2

2⇥TGPU
UpdateWeights 20 ↵NParam

thread due to load imbalance.
Considering this problem, we assume that the number of

GradBuft to be added to SendBuf Xi follows binomial distri-
bution B(NGPU , p), where p = min(TUpdate/TGPU , 1), and
estimate the barrier time with the expected value of difference
between the max number XM = max(X1, X2, · · · , XNNode)
and one number X1 as follows:

TBarrier = ↵
0
E(XM �X1)

= ↵
0
⇢
NGPU (1� p)�

NGPU�1X

i=0

F (i)NNode

�
(6)

Where F (i) is the distribution function of B(NGPU , p).
Note that TBarrier is 0 if p = 1 or NNode = 1, since the
number of GradBuft to be added is constant between update
threads.

E. Performance Model of The Whole System
We define the mini-batch size and the staleness of each

update as stochastic variables:

NMinibatch = NSubbatch

NNode⇥NGPUX

n=1

(Yn + bqc) (7)

NStaleness = Z + brc+ 1 (8)

Where q = r
�1 = TUpdate/TGPU , Yn ⇠ B(1, q � bqc) and

Z ⇠ B(1, r�brc). Here we assume that the phase of threads
is distributed uniformly (Fig. 5, 6).

�
���

�	��
�	����

�������
�	����

TUpdate

Yn =1Yn = 0

NMinibatch = 2

q!" #$= 2

TGPU TGPU TGPU TGPU TGPU

TUpdate
NMinibatch = 3

Fig. 5. The behavior of NMinibatch on 2 < q < 3, NGPU = NNode = 1:
The start time of update thread iteration is assumed to be distributed over the
blue line uniformly.

�
���

�	��
�	����

�������
�	����

TUpdate

Z =1Z = 0

NStaleness = 3

TUpdate TUpdate TUpdate TUpdate

TGPU

NStaleness = 4

TGPU

r!" #$= 2

Fig. 6. The behavior of NStaleness on 2 < r < 3: The start time of GPU
thread iteration is assumed to be distributed over the blue line uniformly.

We also define non-stochastic variables, NMinibatch and
NStaleness, as approximations of the expected value of
NMinibatch and NStaleness:

NMinibatch = E(NMinibatch

��
q=(TUpdate/TGPU)

)

=
NNode ⇥NGPU ⇥NSubbatch ⇥ TUpdate

TGPU
(9)

NStaleness = E(NStaleness

��
r=(TGPU/TUpdate)

)

= TGPU/TUpdate + 1 (10)

Epoch time is then determined as follows:

TEpoch =
NFile ⇥ TUpdate

NMinibatch

=
NFile ⇥ TGPU

NNode ⇥NGPU ⇥NSubbatch
(11)

Algorithm 2 Update Thread Loop
1: repeat

2: for t = 1 to NGPU do

3: lock GradBuft mutex
4: if GradBuft has been updated then

5: if t = 1 then

6: SendBuf GradBuft
7: else

8: SendBuf SendBuf + GradBuft
9: end if

10: else if t = 1 then

11: SendBuf 0
12: end if

13: unlock GradBuft mutex
14: end for

15: OldWeights (WeightsBuf)n
16: SendBuf SendBuf + (OldWeights)n +

⌫(DeltaWeights)n
17: RecvBuf MPI Allreduce(SendBuf)
18: DeltaWeights (RecvBuf)n � OldWeights
19: lock WeightsBuf mutex
20: WeightsBuf RecvBuf
21: unlock WeightsBuf mutex
22: until the process is terminated

TABLE IV
COMPONENTS OF UPDATE THREAD LOOP

Component Line Number Model
in Algorithm 2

LockGradient U 3 NGPU ⇥ TUpdateGradient
2

2⇥TGPU
SumGradient 4 - 12 ↵NParamX1

(X1 ⇠ B(NGPU ,
min(TUpdate/TGPU , 1))

OperateVectors 15, 16, 18 ↵NParam/NNode
Allreduce 17 TBarrier+

(↵ log2(NNode) + �)⇥NParam

LockWeights U 19 NGPU ⇥ TFetchWeights
2

2⇥TGPU
UpdateWeights 20 ↵NParam

thread due to load imbalance.
Considering this problem, we assume that the number of

GradBuft to be added to SendBuf Xi follows binomial distri-
bution B(NGPU , p), where p = min(TUpdate/TGPU , 1), and
estimate the barrier time with the expected value of difference
between the max number XM = max(X1, X2, · · · , XNNode)
and one number X1 as follows:

TBarrier = ↵
0
E(XM �X1)

= ↵
0
⇢
NGPU (1� p)�

NGPU�1X

i=0

F (i)NNode

�
(6)

Where F (i) is the distribution function of B(NGPU , p).
Note that TBarrier is 0 if p = 1 or NNode = 1, since the
number of GradBuft to be added is constant between update
threads.

E. Performance Model of The Whole System
We define the mini-batch size and the staleness of each

update as stochastic variables:

NMinibatch = NSubbatch

NNode⇥NGPUX

n=1

(Yn + bqc) (7)

NStaleness = Z + brc+ 1 (8)

Where q = r
�1 = TUpdate/TGPU , Yn ⇠ B(1, q � bqc) and

Z ⇠ B(1, r�brc). Here we assume that the phase of threads
is distributed uniformly (Fig. 5, 6).

�
���

�	��
�	����

�������
�	����

TUpdate

Yn =1Yn = 0

NMinibatch = 2

q!" #$= 2

TGPU TGPU TGPU TGPU TGPU

TUpdate
NMinibatch = 3

Fig. 5. The behavior of NMinibatch on 2 < q < 3, NGPU = NNode = 1:
The start time of update thread iteration is assumed to be distributed over the
blue line uniformly.

�
���

�	��
�	����

�������
�	����

TUpdate

Z =1Z = 0

NStaleness = 3

TUpdate TUpdate TUpdate TUpdate

TGPU

NStaleness = 4

TGPU

r!" #$= 2

Fig. 6. The behavior of NStaleness on 2 < r < 3: The start time of GPU
thread iteration is assumed to be distributed over the blue line uniformly.

We also define non-stochastic variables, NMinibatch and
NStaleness, as approximations of the expected value of
NMinibatch and NStaleness:

NMinibatch = E(NMinibatch

��
q=(TUpdate/TGPU)

)

=
NNode ⇥NGPU ⇥NSubbatch ⇥ TUpdate

TGPU
(9)

NStaleness = E(NStaleness

��
r=(TGPU/TUpdate)

)

= TGPU/TUpdate + 1 (10)

Epoch time is then determined as follows:

TEpoch =
NFile ⇥ TUpdate

NMinibatch

=
NFile ⇥ TGPU

NNode ⇥NGPU ⇥NSubbatch
(11)

Algorithm 2 Update Thread Loop
1: repeat

2: for t = 1 to NGPU do

3: lock GradBuft mutex
4: if GradBuft has been updated then

5: if t = 1 then

6: SendBuf GradBuft
7: else

8: SendBuf SendBuf + GradBuft
9: end if

10: else if t = 1 then

11: SendBuf 0
12: end if

13: unlock GradBuft mutex
14: end for

15: OldWeights (WeightsBuf)n
16: SendBuf SendBuf + (OldWeights)n +

⌫(DeltaWeights)n
17: RecvBuf MPI Allreduce(SendBuf)
18: DeltaWeights (RecvBuf)n � OldWeights
19: lock WeightsBuf mutex
20: WeightsBuf RecvBuf
21: unlock WeightsBuf mutex
22: until the process is terminated

TABLE IV
COMPONENTS OF UPDATE THREAD LOOP

Component Line Number Model
in Algorithm 2

LockGradient U 3 NGPU ⇥ TUpdateGradient
2

2⇥TGPU
SumGradient 4 - 12 ↵NParamX1

(X1 ⇠ B(NGPU ,
min(TUpdate/TGPU , 1))

OperateVectors 15, 16, 18 ↵NParam/NNode
Allreduce 17 TBarrier+

(↵ log2(NNode) + �)⇥NParam

LockWeights U 19 NGPU ⇥ TFetchWeights
2

2⇥TGPU
UpdateWeights 20 ↵NParam

thread due to load imbalance.
Considering this problem, we assume that the number of

GradBuft to be added to SendBuf Xi follows binomial distri-
bution B(NGPU , p), where p = min(TUpdate/TGPU , 1), and
estimate the barrier time with the expected value of difference
between the max number XM = max(X1, X2, · · · , XNNode)
and one number X1 as follows:

TBarrier = ↵
0
E(XM �X1)

= ↵
0
⇢
NGPU (1� p)�

NGPU�1X

i=0

F (i)NNode

�
(6)

Where F (i) is the distribution function of B(NGPU , p).
Note that TBarrier is 0 if p = 1 or NNode = 1, since the
number of GradBuft to be added is constant between update
threads.

E. Performance Model of The Whole System
We define the mini-batch size and the staleness of each

update as stochastic variables:

NMinibatch = NSubbatch

NNode⇥NGPUX

n=1

(Yn + bqc) (7)

NStaleness = Z + brc+ 1 (8)

Where q = r
�1 = TUpdate/TGPU , Yn ⇠ B(1, q � bqc) and

Z ⇠ B(1, r�brc). Here we assume that the phase of threads
is distributed uniformly (Fig. 5, 6).

�
���

�	��
�	����

�������
�	����

TUpdate

Yn =1Yn = 0

NMinibatch = 2

q!" #$= 2

TGPU TGPU TGPU TGPU TGPU

TUpdate
NMinibatch = 3

Fig. 5. The behavior of NMinibatch on 2 < q < 3, NGPU = NNode = 1:
The start time of update thread iteration is assumed to be distributed over the
blue line uniformly.

�
���

�	��
�	����

�������
�	����

TUpdate

Z =1Z = 0

NStaleness = 3

TUpdate TUpdate TUpdate TUpdate

TGPU

NStaleness = 4

TGPU

r!" #$= 2

Fig. 6. The behavior of NStaleness on 2 < r < 3: The start time of GPU
thread iteration is assumed to be distributed over the blue line uniformly.

We also define non-stochastic variables, NMinibatch and
NStaleness, as approximations of the expected value of
NMinibatch and NStaleness:

NMinibatch = E(NMinibatch

��
q=(TUpdate/TGPU)

)

=
NNode ⇥NGPU ⇥NSubbatch ⇥ TUpdate

TGPU
(9)

NStaleness = E(NStaleness

��
r=(TGPU/TUpdate)

)

= TGPU/TUpdate + 1 (10)

Epoch time is then determined as follows:

TEpoch =
NFile ⇥ TUpdate

NMinibatch

=
NFile ⇥ TGPU

NNode ⇥NGPU ⇥NSubbatch
(11)

The start time is
assumed to be

distributed uniformly�

NMinibatch depends on
when the iteration

finished�

Gradient received
by update thread�

Time�

GPU
thread �

Update
thread �

TUpdate

Z =1Z = 0

NStaleness = 3

TUpdate TUpdate TUpdate TUpdate

TGPU

NStaleness = 4

TGPU

r!" #$= 2

Proposed Performance Model
Predicting Distribution of Staleness�

! 
!  Where�

���

Algorithm 2 Update Thread Loop
1: repeat

2: for t = 1 to NGPU do

3: lock GradBuft mutex
4: if GradBuft has been updated then

5: if t = 1 then

6: SendBuf GradBuft
7: else

8: SendBuf SendBuf + GradBuft
9: end if

10: else if t = 1 then

11: SendBuf 0
12: end if

13: unlock GradBuft mutex
14: end for

15: OldWeights (WeightsBuf)n
16: SendBuf SendBuf + (OldWeights)n +

⌫(DeltaWeights)n
17: RecvBuf MPI Allreduce(SendBuf)
18: DeltaWeights (RecvBuf)n � OldWeights
19: lock WeightsBuf mutex
20: WeightsBuf RecvBuf
21: unlock WeightsBuf mutex
22: until the process is terminated

TABLE IV
COMPONENTS OF UPDATE THREAD LOOP

Component Line Number Model
in Algorithm 2

LockGradient U 3 NGPU ⇥ TUpdateGradient
2

2⇥TGPU
SumGradient 4 - 12 ↵NParamX1

(X1 ⇠ B(NGPU ,
min(TUpdate/TGPU , 1))

OperateVectors 15, 16, 18 ↵NParam/NNode
Allreduce 17 TBarrier+

(↵ log2(NNode) + �)⇥NParam

LockWeights U 19 NGPU ⇥ TFetchWeights
2

2⇥TGPU
UpdateWeights 20 ↵NParam

thread due to load imbalance.
Considering this problem, we assume that the number of

GradBuft to be added to SendBuf Xi follows binomial distri-
bution B(NGPU , p), where p = min(TUpdate/TGPU , 1), and
estimate the barrier time with the expected value of difference
between the max number XM = max(X1, X2, · · · , XNNode)
and one number X1 as follows:

TBarrier = ↵
0
E(XM �X1)

= ↵
0
⇢
NGPU (1� p)�

NGPU�1X

i=0

F (i)NNode

�
(6)

Where F (i) is the distribution function of B(NGPU , p).
Note that TBarrier is 0 if p = 1 or NNode = 1, since the
number of GradBuft to be added is constant between update
threads.

E. Performance Model of The Whole System
We define the mini-batch size and the staleness of each

update as stochastic variables:

NMinibatch = NSubbatch

NNode⇥NGPUX

n=1

(Yn + bqc) (7)

NStaleness = Z + brc+ 1 (8)

Where q = r
�1 = TUpdate/TGPU , Yn ⇠ B(1, q � bqc) and

Z ⇠ B(1, r�brc). Here we assume that the phase of threads
is distributed uniformly (Fig. 5, 6).

�
���

�	��
�	����

�������
�	����

TUpdate

Yn =1Yn = 0

NMinibatch = 2

q!" #$= 2

TGPU TGPU TGPU TGPU TGPU

TUpdate
NMinibatch = 3

Fig. 5. The behavior of NMinibatch on 2 < q < 3, NGPU = NNode = 1:
The start time of update thread iteration is assumed to be distributed over the
blue line uniformly.

�
���

�	��
�	����

�������
�	����

TUpdate

Z =1Z = 0

NStaleness = 3

TUpdate TUpdate TUpdate TUpdate

TGPU

NStaleness = 4

TGPU

r!" #$= 2

Fig. 6. The behavior of NStaleness on 2 < r < 3: The start time of GPU
thread iteration is assumed to be distributed over the blue line uniformly.

We also define non-stochastic variables, NMinibatch and
NStaleness, as approximations of the expected value of
NMinibatch and NStaleness:

NMinibatch = E(NMinibatch

��
q=(TUpdate/TGPU)

)

=
NNode ⇥NGPU ⇥NSubbatch ⇥ TUpdate

TGPU
(9)

NStaleness = E(NStaleness

��
r=(TGPU/TUpdate)

)

= TGPU/TUpdate + 1 (10)

Epoch time is then determined as follows:

TEpoch =
NFile ⇥ TUpdate

NMinibatch

=
NFile ⇥ TGPU

NNode ⇥NGPU ⇥NSubbatch
(11)

Algorithm 2 Update Thread Loop
1: repeat

2: for t = 1 to NGPU do

3: lock GradBuft mutex
4: if GradBuft has been updated then

5: if t = 1 then

6: SendBuf GradBuft
7: else

8: SendBuf SendBuf + GradBuft
9: end if

10: else if t = 1 then

11: SendBuf 0
12: end if

13: unlock GradBuft mutex
14: end for

15: OldWeights (WeightsBuf)n
16: SendBuf SendBuf + (OldWeights)n +

⌫(DeltaWeights)n
17: RecvBuf MPI Allreduce(SendBuf)
18: DeltaWeights (RecvBuf)n � OldWeights
19: lock WeightsBuf mutex
20: WeightsBuf RecvBuf
21: unlock WeightsBuf mutex
22: until the process is terminated

TABLE IV
COMPONENTS OF UPDATE THREAD LOOP

Component Line Number Model
in Algorithm 2

LockGradient U 3 NGPU ⇥ TUpdateGradient
2

2⇥TGPU
SumGradient 4 - 12 ↵NParamX1

(X1 ⇠ B(NGPU ,
min(TUpdate/TGPU , 1))

OperateVectors 15, 16, 18 ↵NParam/NNode
Allreduce 17 TBarrier+

(↵ log2(NNode) + �)⇥NParam

LockWeights U 19 NGPU ⇥ TFetchWeights
2

2⇥TGPU
UpdateWeights 20 ↵NParam

thread due to load imbalance.
Considering this problem, we assume that the number of

GradBuft to be added to SendBuf Xi follows binomial distri-
bution B(NGPU , p), where p = min(TUpdate/TGPU , 1), and
estimate the barrier time with the expected value of difference
between the max number XM = max(X1, X2, · · · , XNNode)
and one number X1 as follows:

TBarrier = ↵
0
E(XM �X1)

= ↵
0
⇢
NGPU (1� p)�

NGPU�1X

i=0

F (i)NNode

�
(6)

Where F (i) is the distribution function of B(NGPU , p).
Note that TBarrier is 0 if p = 1 or NNode = 1, since the
number of GradBuft to be added is constant between update
threads.

E. Performance Model of The Whole System

We define the mini-batch size and the staleness of each
update as stochastic variables:

NMinibatch = NSubbatch

NNode⇥NGPUX

n=1

(Yn + bqc) (7)

NStaleness = Z + brc+ 1 (8)

Where q = r
�1 = TUpdate/TGPU , Yn ⇠ B(1, q � bqc) and

Z ⇠ B(1, r�brc). Here we assume that the phase of threads
is distributed uniformly (Fig. 5, 6).

r = TGPU/TUpdate, Z ⇠ B(1, r � brc).

�
���

�	��
�	����

�������
�	����

TUpdate

Yn =1Yn = 0

NMinibatch = 2

q!" #$= 2

TGPU TGPU TGPU TGPU TGPU

TUpdate
NMinibatch = 3

Fig. 5. The behavior of NMinibatch on 2 < q < 3, NGPU = NNode = 1:
The start time of update thread iteration is assumed to be distributed over the
blue line uniformly.

�
���

�	��
�	����

�������
�	����

TUpdate

Z =1Z = 0

NStaleness = 3

TUpdate TUpdate TUpdate TUpdate

TGPU

NStaleness = 4

TGPU

r!" #$= 2

Fig. 6. The behavior of NStaleness on 2 < r < 3: The start time of GPU
thread iteration is assumed to be distributed over the blue line uniformly.

We also define non-stochastic variables, NMinibatch and
NStaleness, as approximations of the expected value of
NMinibatch and NStaleness:

NMinibatch = E(NMinibatch

��
q=(TUpdate/TGPU)

)

=
NNode ⇥NGPU ⇥NSubbatch ⇥ TUpdate

TGPU
(9)

NStaleness = E(NStaleness

��
r=(TGPU/TUpdate)

)

= TGPU/TUpdate + 1 (10)

The start time is
assumed to be

distributed uniformly�

NStaleness depends on
when the iteration

finished�

Gradient received
by update thread�

Proposed Performance Model
Predicting Average Statistics�

!  Three outputs are computed from thread iteration time and
machine configurations

���

Algorithm 2 Update Thread Loop
1: repeat

2: for t = 1 to NGPU do

3: lock GradBuft mutex
4: if GradBuft has been updated then

5: if t = 1 then

6: SendBuf GradBuft
7: else

8: SendBuf SendBuf + GradBuft
9: end if

10: else if t = 1 then

11: SendBuf 0
12: end if

13: unlock GradBuft mutex
14: end for

15: OldWeights (WeightsBuf)n
16: SendBuf SendBuf + (OldWeights)n +

⌫(DeltaWeights)n
17: RecvBuf MPI Allreduce(SendBuf)
18: DeltaWeights (RecvBuf)n � OldWeights
19: lock WeightsBuf mutex
20: WeightsBuf RecvBuf
21: unlock WeightsBuf mutex
22: until the process is terminated

TABLE IV
COMPONENTS OF UPDATE THREAD LOOP

Component Line Number Model
in Algorithm 2

LockGradient U 3 NGPU ⇥ TUpdateGradient
2

2⇥TGPU
SumGradient 4 - 12 ↵NParamX1

(X1 ⇠ B(NGPU ,
min(TUpdate/TGPU , 1))

OperateVectors 15, 16, 18 ↵NParam/NNode
Allreduce 17 TBarrier+

(↵ log2(NNode) + �)⇥NParam

LockWeights U 19 NGPU ⇥ TFetchWeights
2

2⇥TGPU
UpdateWeights 20 ↵NParam

thread due to load imbalance.
Considering this problem, we assume that the number of

GradBuft to be added to SendBuf Xi follows binomial distri-
bution B(NGPU , p), where p = min(TUpdate/TGPU , 1), and
estimate the barrier time with the expected value of difference
between the max number XM = max(X1, X2, · · · , XNNode)
and one number X1 as follows:

TBarrier = ↵
0
E(XM �X1)

= ↵
0
⇢
NGPU (1� p)�

NGPU�1X

i=0

F (i)NNode

�
(6)

Where F (i) is the distribution function of B(NGPU , p).
Note that TBarrier is 0 if p = 1 or NNode = 1, since the
number of GradBuft to be added is constant between update
threads.

E. Performance Model of The Whole System

We define the mini-batch size and the staleness of each
update as stochastic variables:

NMinibatch = NSubbatch

NNode⇥NGPUX

n=1

(Yn + bqc) (7)

NStaleness = Z + brc+ 1 (8)

Where q = r
�1 = TUpdate/TGPU , Yn ⇠ B(1, q � bqc) and

Z ⇠ B(1, r�brc). Here we assume that the phase of threads
is distributed uniformly (Fig. 5, 6).

r = TGPU/TUpdate, Z ⇠ B(1, r � brc).

�
���

�	��
�	����

�������
�	����

TUpdate

Yn =1Yn = 0

NMinibatch = 2

q!" #$= 2

TGPU TGPU TGPU TGPU TGPU

TUpdate
NMinibatch = 3

Fig. 5. The behavior of NMinibatch on 2 < q < 3, NGPU = NNode = 1:
The start time of update thread iteration is assumed to be distributed over the
blue line uniformly.

�
���

�	��
�	����

�������
�	����

TUpdate

Z =1Z = 0

NStaleness = 3

TUpdate TUpdate TUpdate TUpdate

TGPU

NStaleness = 4

TGPU

r!" #$= 2

Fig. 6. The behavior of NStaleness on 2 < r < 3: The start time of GPU
thread iteration is assumed to be distributed over the blue line uniformly.

We also define non-stochastic variables, NMinibatch and
NStaleness, as approximations of the expected value of
NMinibatch and NStaleness:

NMinibatch = E(NMinibatch

��
q=(TUpdate/TGPU)

)

=
NNode ⇥NGPU ⇥NSubbatch ⇥ TUpdate

TGPU
(9)

NStaleness = E(NStaleness

��
r=(TGPU/TUpdate)

)

= TGPU/TUpdate + 1 (10)

Algorithm 2 Update Thread Loop
1: repeat

2: for t = 1 to NGPU do

3: lock GradBuft mutex
4: if GradBuft has been updated then

5: if t = 1 then

6: SendBuf GradBuft
7: else

8: SendBuf SendBuf + GradBuft
9: end if

10: else if t = 1 then

11: SendBuf 0
12: end if

13: unlock GradBuft mutex
14: end for

15: OldWeights (WeightsBuf)n
16: SendBuf SendBuf + (OldWeights)n +

⌫(DeltaWeights)n
17: RecvBuf MPI Allreduce(SendBuf)
18: DeltaWeights (RecvBuf)n � OldWeights
19: lock WeightsBuf mutex
20: WeightsBuf RecvBuf
21: unlock WeightsBuf mutex
22: until the process is terminated

TABLE IV
COMPONENTS OF UPDATE THREAD LOOP

Component Line Number Model
in Algorithm 2

LockGradient U 3 NGPU ⇥ TUpdateGradient
2

2⇥TGPU
SumGradient 4 - 12 ↵NParamX1

(X1 ⇠ B(NGPU ,
min(TUpdate/TGPU , 1))

OperateVectors 15, 16, 18 ↵NParam/NNode
Allreduce 17 TBarrier+

(↵ log2(NNode) + �)⇥NParam

LockWeights U 19 NGPU ⇥ TFetchWeights
2

2⇥TGPU
UpdateWeights 20 ↵NParam

thread due to load imbalance.
Considering this problem, we assume that the number of

GradBuft to be added to SendBuf Xi follows binomial distri-
bution B(NGPU , p), where p = min(TUpdate/TGPU , 1), and
estimate the barrier time with the expected value of difference
between the max number XM = max(X1, X2, · · · , XNNode)
and one number X1 as follows:

TBarrier = ↵
0
E(XM �X1)

= ↵
0
⇢
NGPU (1� p)�

NGPU�1X

i=0

F (i)NNode

�
(6)

Where F (i) is the distribution function of B(NGPU , p).
Note that TBarrier is 0 if p = 1 or NNode = 1, since the
number of GradBuft to be added is constant between update
threads.

E. Performance Model of The Whole System

We define the mini-batch size and the staleness of each
update as stochastic variables:

NMinibatch = NSubbatch

NNode⇥NGPUX

n=1

(Yn + bqc) (7)

NStaleness = Z + brc+ 1 (8)

Where q = r
�1 = TUpdate/TGPU , Yn ⇠ B(1, q � bqc) and

Z ⇠ B(1, r�brc). Here we assume that the phase of threads
is distributed uniformly (Fig. 5, 6).

r = TGPU/TUpdate, Z ⇠ B(1, r � brc).

�
���

�	��
�	����

�������
�	����

TUpdate

Yn =1Yn = 0

NMinibatch = 2

q!" #$= 2

TGPU TGPU TGPU TGPU TGPU

TUpdate
NMinibatch = 3

Fig. 5. The behavior of NMinibatch on 2 < q < 3, NGPU = NNode = 1:
The start time of update thread iteration is assumed to be distributed over the
blue line uniformly.

�
���

�	��
�	����

�������
�	����

TUpdate

Z =1Z = 0

NStaleness = 3

TUpdate TUpdate TUpdate TUpdate

TGPU

NStaleness = 4

TGPU

r!" #$= 2

Fig. 6. The behavior of NStaleness on 2 < r < 3: The start time of GPU
thread iteration is assumed to be distributed over the blue line uniformly.

We also define non-stochastic variables, NMinibatch and
NStaleness, as approximations of the expected value of
NMinibatch and NStaleness:

NMinibatch = E(NMinibatch

��
q=(TUpdate/TGPU)

)

=
NNode ⇥NGPU ⇥NSubbatch ⇥ TUpdate

TGPU
(9)

NStaleness = E(NStaleness

��
r=(TGPU/TUpdate)

)

= TGPU/TUpdate + 1 (10)

Algorithm 2 Update Thread Loop
1: repeat

2: for t = 1 to NGPU do

3: lock GradBuft mutex
4: if GradBuft has been updated then

5: if t = 1 then

6: SendBuf GradBuft
7: else

8: SendBuf SendBuf + GradBuft
9: end if

10: else if t = 1 then

11: SendBuf 0
12: end if

13: unlock GradBuft mutex
14: end for

15: OldWeights (WeightsBuf)n
16: SendBuf SendBuf + (OldWeights)n +

⌫(DeltaWeights)n
17: RecvBuf MPI Allreduce(SendBuf)
18: DeltaWeights (RecvBuf)n � OldWeights
19: lock WeightsBuf mutex
20: WeightsBuf RecvBuf
21: unlock WeightsBuf mutex
22: until the process is terminated

TABLE IV
COMPONENTS OF UPDATE THREAD LOOP

Component Line Number Model
in Algorithm 2

LockGradient U 3 NGPU ⇥ TUpdateGradient
2

2⇥TGPU
SumGradient 4 - 12 ↵NParamX1

(X1 ⇠ B(NGPU ,
min(TUpdate/TGPU , 1))

OperateVectors 15, 16, 18 ↵NParam/NNode
Allreduce 17 TBarrier+

(↵ log2(NNode) + �)⇥NParam

LockWeights U 19 NGPU ⇥ TFetchWeights
2

2⇥TGPU
UpdateWeights 20 ↵NParam

thread due to load imbalance.
Considering this problem, we assume that the number of

GradBuft to be added to SendBuf Xi follows binomial distri-
bution B(NGPU , p), where p = min(TUpdate/TGPU , 1), and
estimate the barrier time with the expected value of difference
between the max number XM = max(X1, X2, · · · , XNNode)
and one number X1 as follows:

TBarrier = ↵
0
E(XM �X1)

= ↵
0
⇢
NGPU (1� p)�

NGPU�1X

i=0

F (i)NNode

�
(6)

Where F (i) is the distribution function of B(NGPU , p).
Note that TBarrier is 0 if p = 1 or NNode = 1, since the
number of GradBuft to be added is constant between update
threads.

E. Performance Model of The Whole System

We define the mini-batch size and the staleness of each
update as stochastic variables:

NMinibatch = NSubbatch

NNode⇥NGPUX

n=1

(Yn + bqc) (7)

NStaleness = Z + brc+ 1 (8)

Where q = r
�1 = TUpdate/TGPU , Yn ⇠ B(1, q � bqc) and

Z ⇠ B(1, r�brc). Here we assume that the phase of threads
is distributed uniformly (Fig. 5, 6).

r = TGPU/TUpdate, Z ⇠ B(1, r � brc).

�
���

�	��
�	����

�������
�	����

TUpdate

Yn =1Yn = 0

NMinibatch = 2

q!" #$= 2

TGPU TGPU TGPU TGPU TGPU

TUpdate
NMinibatch = 3

Fig. 5. The behavior of NMinibatch on 2 < q < 3, NGPU = NNode = 1:
The start time of update thread iteration is assumed to be distributed over the
blue line uniformly.

�
���

�	��
�	����

�������
�	����

TUpdate

Z =1Z = 0

NStaleness = 3

TUpdate TUpdate TUpdate TUpdate

TGPU

NStaleness = 4

TGPU

r!" #$= 2

Fig. 6. The behavior of NStaleness on 2 < r < 3: The start time of GPU
thread iteration is assumed to be distributed over the blue line uniformly.

We also define non-stochastic variables, NMinibatch and
NStaleness, as approximations of the expected value of
NMinibatch and NStaleness:

NMinibatch = E(NMinibatch

��
q=(TUpdate/TGPU)

)

=
NNode ⇥NGPU ⇥NSubbatch ⇥ TUpdate

TGPU
(9)

NStaleness = E(NStaleness

��
r=(TGPU/TUpdate)

)

= TGPU/TUpdate + 1 (10)

Algorithm 2 Update Thread Loop
1: repeat

2: for t = 1 to NGPU do

3: lock GradBuft mutex
4: if GradBuft has been updated then

5: if t = 1 then

6: SendBuf GradBuft
7: else

8: SendBuf SendBuf + GradBuft
9: end if

10: else if t = 1 then

11: SendBuf 0
12: end if

13: unlock GradBuft mutex
14: end for

15: OldWeights (WeightsBuf)n
16: SendBuf SendBuf + (OldWeights)n +

⌫(DeltaWeights)n
17: RecvBuf MPI Allreduce(SendBuf)
18: DeltaWeights (RecvBuf)n � OldWeights
19: lock WeightsBuf mutex
20: WeightsBuf RecvBuf
21: unlock WeightsBuf mutex
22: until the process is terminated

TABLE IV
COMPONENTS OF UPDATE THREAD LOOP

Component Line Number Model
in Algorithm 2

LockGradient U 3 NGPU ⇥ TUpdateGradient
2

2⇥TGPU
SumGradient 4 - 12 ↵NParamX1

(X1 ⇠ B(NGPU ,
min(TUpdate/TGPU , 1))

OperateVectors 15, 16, 18 ↵NParam/NNode
Allreduce 17 TBarrier+

(↵ log2(NNode) + �)⇥NParam

LockWeights U 19 NGPU ⇥ TFetchWeights
2

2⇥TGPU
UpdateWeights 20 ↵NParam

thread due to load imbalance.
Considering this problem, we assume that the number of

GradBuft to be added to SendBuf Xi follows binomial distri-
bution B(NGPU , p), where p = min(TUpdate/TGPU , 1), and
estimate the barrier time with the expected value of difference
between the max number XM = max(X1, X2, · · · , XNNode)
and one number X1 as follows:

TBarrier = ↵
0
E(XM �X1)

= ↵
0
⇢
NGPU (1� p)�

NGPU�1X

i=0

F (i)NNode

�
(6)

Where F (i) is the distribution function of B(NGPU , p).
Note that TBarrier is 0 if p = 1 or NNode = 1, since the
number of GradBuft to be added is constant between update
threads.

E. Performance Model of The Whole System

We define the mini-batch size and the staleness of each
update as stochastic variables:

NMinibatch = NSubbatch

NNode⇥NGPUX

n=1

(Yn + bqc) (7)

NStaleness = Z + brc+ 1 (8)

Where q = r
�1 = TUpdate/TGPU , Yn ⇠ B(1, q � bqc) and

Z ⇠ B(1, r�brc). Here we assume that the phase of threads
is distributed uniformly (Fig. 5, 6).

r = TGPU/TUpdate, Z ⇠ B(1, r � brc).

�
���

�	��
�	����

�������
�	����

TUpdate

Yn =1Yn = 0

NMinibatch = 2

q!" #$= 2

TGPU TGPU TGPU TGPU TGPU

TUpdate
NMinibatch = 3

Fig. 5. The behavior of NMinibatch on 2 < q < 3, NGPU = NNode = 1:
The start time of update thread iteration is assumed to be distributed over the
blue line uniformly.

�
���

�	��
�	����

�������
�	����

TUpdate

Z =1Z = 0

NStaleness = 3

TUpdate TUpdate TUpdate TUpdate

TGPU

NStaleness = 4

TGPU

r!" #$= 2

Fig. 6. The behavior of NStaleness on 2 < r < 3: The start time of GPU
thread iteration is assumed to be distributed over the blue line uniformly.

We also define non-stochastic variables, NMinibatch and
NStaleness, as approximations of the expected value of
NMinibatch and NStaleness:

NMinibatch = E(NMinibatch

��
q=(TUpdate/TGPU)

)

=
NNode ⇥NGPU ⇥NSubbatch ⇥ TUpdate

TGPU
(9)

NStaleness = E(NStaleness

��
r=(TGPU/TUpdate)

)

= TGPU/TUpdate + 1 (10)

Epoch time is then determined as follows:

TEpoch =
NFile ⇥ TUpdate

NMinibatch

=
NFile ⇥ TGPU

NNode ⇥NGPU ⇥NSubbatch
(11)

V. EVALUATION

To evaluate our performance model, we run SPRINT on
TSUBAME 2.5 and TSUBAME-KFC/DL. We used ILSVRC
2012 training dataset for the evaluation. In all evaluations
mentioned below, we ignore the time to predict metrics with
the constructed model, because our model is consisted of
simple formulae hence it takes almost no computational cost
for each prediction.

Table V shows three 15-17 layers CNNs we use for the
evaluation.

TABLE V
OVERVIEW OF CNN ARCHITECTURE

x0 Lc L #{pl > 1} NParam(106)
CNN-A 396 15 15 5 16.1
CNN-B 396 15 15 5 12.1
CNN-C 346 17 17 5 12.5

Table VI shows their execution environments. Note that one
Tesla K80 GPU has two NVIDIA GK210 chips, therefore we
use it as two distinct GPUs.

TABLE VI
EVALUATION ENVIRONMENTS

TSUBAME 2.5 TSUBAME-KFC/DL
Number of nodes 1408 42
CPU Intel Xeon CPU X5670 ⇥ 2 Intel Xeon E5-2620 v2 ⇥ 2
GPU NVIDIA Tesla K20X ⇥ 3 NVIDIA Tesla K80 ⇥ 4

ECC enabled ECC disabled
Auto boost enabled

SSD HP 572071-B21 ⇥ 2 Intel SSDSC2BB480G4 ⇥ 2
Interconnect 4X QDR InfiniBand ⇥ 2 4X FDR InfiniBand
OS SUSE Linux Enterprise CentOS 6.4

Server 11 SP3
C compiler icpc 14.02 icpc 14.0.0
CUDA CUDA 7.0 CUDA 7.0
MPI MVAPICH2 2.0rc1 MVAPICH2 2.0rc1

A. Evaluation of the CNN Computation Model
We measured computation time of the CUDA components

using CNN-A (and a similar model which has fully-connected
layers for c2f and c2f B) for 5 minutes on one GPU on
both of TSUBAME 2.5 and TSUBAME-KFC/DL. We varied
NSubbatch = 1, 2, · · · , 5 on TSUBAME 2.5, NSubbatch =
1, 2, · · · , 6 on TSUBAME-KFC/DL. We determined their
model parameters with all measured samples (Fig. 7). The
figure shows that their computation time fits the corresponding
model well, since they are all memory access intensive and
don’t have dynamic memory access patterns.

In addition, we measured cublasSgemm computation time
with matrix size (m,n, k) = (2

x
2 , 2

y
2 , 2

z
2), where x, y, z =

0, 1, 2, · · · and cover all possible matrix sizes in CNN-A,
CNN-B, and CNN-C. We use average time of 5 continuous

0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.005

0.010

0.015

The amount of memory access (Normalized)

C
om

pu
ta

tio
n

tim
e

[s
ec

]

●●●●●●●

●

●●●●●
●

●

●●●

●

●●

●

●●
●

●

●●

●

●

●

●
●

●●●

●

●●●●●●●

●
●

●● ●●

●

●●●●●●●●
●

●●
●

●

●●

●

●●

●

●●●●●● ● ●
●●●

●

●
●

●
●●●●●●

●

● ●●

●

●●●●●●

●

●●
●

●
●●● ● ●●

●
●●●

●
●

●

●

●

● ● ●
●●●●

●
●●●●●●●●●●

●

●

●

●

●

●

●
●●●

●

●●●
●●

●
●●

●●
●●

●

●

●

●●●

●

●●

●

●●●●●●

●

●●●

●

●● ● ●
● ●

●●●
●●●●●

●
●●

●
● ●●●

●
●

●●
●●

●

●●●●●
●

●

●
●

●
●●●●●●●●

●

●●
●

●
●

●

●
●●●●

●●
●

●●

●●
● ●

●

●

●●●

●

●●
●

● ●●
●●

●

● ●●●●●●●●●

●

●●●●

●

●

●●
●

● ●

●●

●

●●●
●

●●
●●●

●

●●

●

●

●●
●

● ●● ●
●● ●●

●

●

● ●●●●●●●

●

●
●

●

●● ●●●●●●

●

●

●

●

●

●

● ●●●

●

●
●●

●●

●●●
●●●●●●

●

●●●
●●●●●●
●●

●

●

● ●●
●●

●

● ●●●
●●●

●
●●

●

●●
●

●●

●
● ●

● ●●●●●

●

●●●●●● ●●
●●●●

●

●●●

●

●●
●

● ●●

●

●●
●● ●

●● ●●

●

●

●

●● ●
●

●

● ● ●
●●●●

●●

●●●●●
●

●●●●●●●●
●● ●

●●
●

●●
●

●●
●● ●

●
●

●●

●

● ●
●

●

●

●

● ●●

●

●

●

●●●
●

●

●

●●●●

●

●●

●
●●

●

●

●
●● ●●●●●●

●

●

●● ● ●
●

●
●

●

●●

● ●

●

●
●●●●●

●

●●●● ●●
●

●●

●

●
●

●
●

●●●
●●

●●

●

●

●

●●

●

●
●

●

●

●●●● ●●

●

● ●●●●
●

●

●
●

●

●●●● ●●
●●●●●●●●

●

● ●●
● ●

●

●●
●

●● ●●●●●●

●

●

●

●
●●●●●●

●

●● ●●●
●●

●

●

●●●●●●●●
●

●

●
●

●●
●●

●

●

●●
●

●●●●●
●

●●●●●

●

●●●●
●

●● ●
●●

●

●●

●

●●
●

●●●●

●

●
●●●

● ●

●

●

●●●

●

●
●

●
●

●
●

●
●●

●
●

●
●

●●●●●
●

●

●●●
●

●●●●●

●

●●●●●●●●●●

●

●●●●●●●
●

●●
● ●

●●●●

●

● ●●

●

●

●

● ●● ●●

●

●
●●●
●

●

●
●

●

●

●●
●●●●●●
●

●

●

●

●●

●

●● ● ●
●●

●

●●●
●●●●

●
●● ●●●

●●

●

●●●
●

●●
●

●

●●
● ●●●●

●
●

●

●●

●

●
●●●

●

●●● ●●●●●
●●●
●

●

●●●
●

●●
●

●●

●

● ●●

●●

●●●●●●●● ●●

●
●●●
●

●

●
● ●

●●●
●

●●●

●

●
●●●

●
●

● ● ●●

●
●

● ●●
●●●●●

●

●●●●
●●

●

●
●

●●

●●
●

●

●

●

●●
●

●●●●●

●
●●

●
●

●

●
●

●●●

●

●●

● ●

●
●●

●●

●

●

●●
●

●

●

●

●
●

●●

●
●●

●

●

●

● ●●●
●

●●
●●

●●●
●

●●
●

●● ●
●

●

●
●

●●

●

●●

●

●●●●●●●●

●

●●●●●● ●

●

●

●

●

●●●

●

● ●●

● ●

●●●●●

●

●●●●●●●● ●

●

●

●

●
●

●

●● ●●●●● ●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●●●
●

●●
●

●

●

●

●●

●

●●●● ●●●

●

●● ●●

●

●
●

●●

●

●●●
●

●

●

●●●

●

●●
●●

●

●

● ●●

●

● ●●●●●

●

●●
●

●
●

●●●●●●●●

●
●●●

●

●●
●

●●●

●

●●

●
●

●● ●● ●
●●

●

●
●

●●●●●●●

●
●●

●

●●●

●

●
●●●

●● ●

●

●
●●●

●●

●●●●●

●
●

●●●

●

●

●●●

●

●●●
●

● ●●
●

●●●●●

●

●●

●

●● ●●
●●●●

●
●●●

●●●

●

● ●●●

●

●●
●

●
●

●●●● ●●●

●

●●
●●

●

●

●

●●
●

● ●●● ●●●
●

●●●
●

●

●

●

●
●

● ●

●

●

●● ●●

●

●●

●
●●

●

●
●

●

●

●●

●

●●●

●

●
●

●●

● ●●● ●

●

●

●

●●●

●

●●●

●

●●●●

●

●

●

●●

●

●
●

●●●

●

●●
●●●●●●
●● ●

●
●

●●
●●●
●

●

●●●
●

●●●●●
●●

●
●●

●

●

●●●●●

●

●

●●

●

●

●
●

●●●

●

●●●

●

●

●●●●●●●●●●●●
●●

●
●

●●●●
●

●●
●

●●●●●

●

●●●● ●●

●

●●●●
●

●

●

●

●●● ●

●

●●

●

●

●●●●

●

● ●●
●

●

●

●

●●

●

●●●
●

●●●●

●
●

●

●

●
●

●
●

●●●● ●● ●●● ● ● ●●
●●●●● ● ●
●

●
●

●

●●
●

●
●

●
●

●

● ●

●

●

●

●

●
●

●

●
●

●●●

●
●

●

● ●●●●● ●●

●

●
●

●●●

●

●●

●

●
●

●● ●●●●● ●●
●●

●

●

●

●

●

●●

●

●●

●

●
●

●
●●

● ●
●● ●●●

●

●●

●

●

●

●
●●●●●●●●●

●

●
●●●

●
●

●

●● ●●●● ●●●●●●
●

●

●

●

●

●

●

●●
●

●

●

●

●●●●

●

●●
●

●●● ●●●●
●

●●●●●●●

●

●

●●
●●●●●

●

●

●
●●●●●●

●
● ●

●●

●

●● ●
●

●

●

●●●●●
●

●●●
●●

●
●

●

●●●●

●

●
●

●

●
●

●●
●●● ●●

●

●

●●
●

●

●
●●

●

●●●●

●

●●●●●●●● ●●

●

●

●●●
●

●

●●
●●

●

●

●●

●●
●

●

●

●

●●
●

●● ●●●●●●●

●

●●●
●

●●●●●

●

●
●

●

●

●

●
●

●
●

●●● ●●

●

●

●

●

●

●●●

●
●

●
●

●
●

●

●

●● ●

●●

● ●●
●

●

●

●●

●
●

●

●● ●●●●●●●

●

●●●●

●

● ●● ●
●

●
●

●●●
●

●
●

●
●●●

●●
●

●
●●●●●

●

●

●
●

●●
●

●●●●●●●

●

●

●

●

● ●
●●●

●

●●
●

●●● ●●
●

●●

●

●
●

●●●●●

●

●●●●
●●●●
●

●●

●

●●●●
●

●● ●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●●●●●● ●●● ●● ●
● ●

●

●
●

●
●●

●

●
●●

●
●

●

●
●

●●

●
●●●●●

●
●

●
●●

● ●●●● ●●●●●●

●

●
●●●●●

●

●●

●

●●

●

●
●●●

●

●

● ●●

●

●●●●
●

●

●

●

● ●●

●

●●●

●

●●● ●● ●●●
●

●

●
●

●●

●

●
●●

●

●●

●
●

●
●

●

●●●●●

●

●●●●●
●●●●

●

●
●

●●●

●

●●

●

●
●

●

●●● ●
●●●●

● ●

●●

●

●

●● ●●●
●

●

● ●● ●●
●

●●●● ●●

●

●
● ● ●

●

●●●●●

●
●●

●

●

●●●

●●

● ●
●

●

●
●● ●●●

●

●
●●● ●●●●

●
●●

●
●●

●

●

●
●

● ●

●

●

●●
●

●

●

●

●● ●

●

●

●
●

●

●

●

● ●●●

●
●

●
●

●

●

●

●

●
●●

●
●●

●

●

● ●● ●●
●●●

●● ●

●

●●●●

●

●
●

●
●●●●

●

●●●

●

●
●

●●●

●

●
●

●

●

●

●

●
● ●●●●●

●

●
●

●●●

●●
●●

●●
●●●● ●●●●●

●●
●

●●●
●

●

●●●●

●

●

●
●

●

●●

●

●●●

●

●●●●
●

●●●●●●
●

●●●●

●

●

●

● ●

●
●

●●
●

●●
●

●

●

●

●●

●

●● ●●●●

●

●
●

●●●●●●●●●

●

●

●●
●●

● ●
●

●●●
● ● ●

●● ●●●●●●

●

●●● ● ●
●●● ● ●
●

●

●

●

●
●

●●

●

●
●

●

●
●●●● ●

●

● ●

●

●●● ●
●

●● ●●
●

●
●●

●

●●
●

●
●● ●

●● ●

●

●

●

●
●

●●●

●

●

●
●

●

●
●●●

●

●●●

●

●●●●●

●

●
●

●●●●●

●

●● ●

●

●

●
●●●●

●

●●

●

●
●●

●

●

●
●

●

●

●●
●

●●

●

●●

●●

●●●

●

●

●●

●

●
●

●●●
●

●

● ●●●
●

●

●●●●
●

●
●

●

●●●●● ●●●●●●●
●

●●

●

●

●

●
●●●●●●

●

●●
●●● ●●●

●●
●●

●

●●
●●●
●

●

●
●

●●

●

●
●

●
●●●● ●●●
●

●
●

●
●

●

●●●
●

●

●

●

●● ●●●

●
●●

●●

●

●●●
●●

●●●●
●●

●

●
●

●

●●●

● ●

●●● ●

●
●

● ●●
●

●

●

●●

●

●

●
●

●
●

● ●

●

●●
●

●●●●

●

●

●

● ●
●

●

●●

●

●●

●

●

●●● ●● ●●
●

●●●●●●●●●●●
●

●

●

●●

●
●●●●

●

●●●●
●●●●●
●

●

● ●
● ●● ●

●

●●●

●

●●

●

●

●
●

●
●●●●
● ●

● ●●

●

●●
●

●●●●● ● ●
●●●●● ●●●

●

●●●●●●

●

●

●●

●

●
●● ●

●●
●●●

● ●

●
●●

●

● ●

●

●
●

●●●

●●
●

●
●

●
●●

●●
●

●●●●

●

●●

●

●
●●

●●●

●

●●●

●

●●●●●●●

●

●
●

●●●●● ●●●

●

●●●
●

●
●

●
●

●
●●

● ●●●●
●

●●

●

●●

●

●●●●●

●

● ●●●
●

●●●●

●

●● ●●

●
●

●
●●●●●●

●

●
●●

●
●● ●●●

●

●

●●

●

●
●●● ● ●● ●●

●

●

●● ●●●● ●●●●●●●●●
●

●●● ●

●

●

●
●

●

●

●● ●●●● ● ●

●

●●●●●●

●

●●●●● ● ●●

●

●●●●
●

● ●
●

●●●
●

●●●
●

● ●●

●
●●

●●●●

●

●
●

●
●●● ●

●
●

●
●● ●●●●● ●●●● ●●● ● ●●

●
●●●● ●●● ●●

●

● ●●
●

●●● ●

●

●●● ●●●
●

●

●●●●● ●●●●

●●
●●

●
●●●●

●
●●

●

●● ●●

●

●●● ●
●

●

●●

●
●

●●●

●

●●●●●●●●●●
●

● ●●
●

●

●
●

●● ●●●●
●

●

●
●●

●
● ●●● ● ●● ●

●
●●

●

●

●

●●●●● ●●● ●●● ●

●●
●●

●
● ●

●●●●
●

●●●●●
●

●●● ● ●●● ●
●●●

●
●● ● ●●●

●●
●

●

●

●

●●●● ●●● ●●●●●●●●● ●
●

●●
●

●
●

● ●●

●
●

●● ●●

●

● ●●●

●

●●●
●

●●● ●●●
●

●

●●●● ●●●●●●● ●●● ●●● ●●● ● ●●

●

●●● ● ●●
●

●

●

●
●

●●●●●
●●

●

●
●● ●● ●●

●
●●●● ● ●●●

●
●

●
●●●

●

●●
● ●●●● ● ●●●

●
●●●

●
●●

●
●

●
●

●

●

●

●● ●●●●

●

●●●

●

●
●

●

●●●● ●●

●

●●●●
●●●●●●

●

●

●●

●

●●● ●●●● ●●

●
●

●●●
●

●●●●●●●●●
●

● ●●

●

●

●

●● ●●● ● ●●●●● ●● ●● ●●

●

●●●●●
●●● ●●●●●

●
●●●●

●
● ●● ●● ● ●●●●● ●● ●
●●● ●● ●● ●●

● ●
●

●

●

●

●

●

●

●

●●●● ●●●
● ●

● ●● ●●● ●●● ●●
●

●

●● ●● ● ●
●● ●●● ● ●
●●●● ●●● ●●●● ●● ●● ●●●●●

● ●
●●●

●

●
●

● ●●● ●●●
●

● ●●
●

● ●● ●● ●●●
●

●●● ●● ●●●●●●● ●

●

●●
●

●●
●

●●
●

●
●

●
●● ●

●●

●●● ●●●
●

● ●●

●●

●●● ● ●
●

●

●
●

●

●

●●
●

●● ●

●

●●● ●● ●●

●

●● ●●
●

●●
●

●
●

●●●●

●

●

●

● ● ●●
●

●

●

●●
●

● ●●

●

● ●● ●●●

●

● ●

●

●●
●

● ●
●

●
●

●
●● ●

●●● ● ●●●●● ●● ●●●●●
●●

●
●

●● ●●● ●●
●

●●●●●● ●●

●

●●
● ●

●

●

●●●●●● ● ●●●●

●

●●● ●●●●●● ●●
●

●●● ●● ● ●●
●●

●

●●
●●

●●● ●

●

●●
●●●●

●
●

●●
●

● ● ●●●
●

●●● ●● ●●●●●● ●●● ●●●●
●

●

●
●

●
●

●●● ●

●

● ●

●

● ●●●●●●

●
●●●●●●●●●●

●
● ●●● ●●

●●● ●● ●● ● ●
●●●●● ●● ●●

●
●●

●● ●● ●●
●

● ●●●
●

●● ●●● ●● ●● ●●●
●

●● ●● ●●
●

● ● ●●●●●● ●●●●
●●

●

●●●● ●●

●

●●

●●

● ●
● ●●●

●

●
●

●●

●

●●●●
●●●● ● ●● ●

●●●

●

●●●●● ●
●

●● ●●

●

●●●●●● ● ●● ●

●

●● ●● ●●●
●

●●

●

● ●●
●●● ●●

●
●●

●
●● ●

●●
● ●● ●

●

● ●
●●●●

●
●

●
●

●

●● ●●●● ●●

●

●
●●●●

●

● ● ●●●
●

● ●●

●

●●

●

●● ●●●

●

●● ●●●● ●
●

●

●

●
●

● ●● ●● ●●●●●●●●
●● ●● ● ●●●●●● ● ●●●

●
●

●
●● ●● ●

●

● ●●●

●

●

●

●● ●
● ● ● ●●●●●● ●● ●●●● ● ●

●
● ●● ●●

● ●

●

●
●

● ●
●

● ●● ●● ●

●

●●
●

●●
●

●●

●

● ●● ●

●

●● ●●

●

●
●●● ●●●●

●

●

●●●

●

●●●● ●●●
●

●●●

●

● ●●●
●

●
●

●●●● ●●●●●
●

●●● ●● ●●●
●

● ●● ●●●●●● ●● ●● ● ●●●● ●● ●
●

●

●●● ●

●

●

●

●●●●●

●

●●●

●

●
●

●●
●●●

●
●●●● ● ●●

●

●● ●●●●●● ●● ●

●

●

●

●
●

●●●

●

● ●●● ●●
●

●
●

●

●

●
●●● ● ●●● ● ●●●●●●●●●

●
●●

●

● ●●●●●

●

●

●

● ●●

●

●●●

● ●

● ●
●

●
●●●●●● ●● ●●●

●
●●●●●

●

● ●● ●
●

●● ●●●●●● ●●●● ●●●●● ●● ●

●

●●● ●●●●● ●●●

●

●
●

● ●●● ●●●● ● ●
●

●●● ●●

●

● ●●●● ●
●

●●●●

●

●
●●●●● ●●●

●
●●

●

●

●

●● ●●

●

● ●

●
●

●● ●● ●

●

● ●
●●

●
●

●●●
●

● ● ●● ●●● ● ●
●●● ●●

●
● ●●●

●
●●

●

●●●● ●●●

●

● ●● ●
●

●●

●

● ● ●
●●●●

●● ●
●●●●● ●

●
●●

●
● ●●● ●● ●

●

● ●●●

●
●●●● ●

●●

●● ●
●●●●

●
●

●
●●● ●● ●●●●●

●

●● ●
●

●●●●● ●●

●
●

●
●●●●●●● ●

●

●●
●

●●●●●● ● ●
●●●● ●● ●

●

●

●

●●● ● ●●●

●

● ● ● ●

●

●
●

●

●

●

●

●
●

●●●● ●●●● ● ●
● ●

●●●

●

●●●●●●●
●

●●●● ●●
●● ●●●

●
●

●●● ● ●●●●●● ●●●● ●● ● ●●●●●●●

●●

●● ●●●
●

● ●●●● ●● ●●●●●●●●

●

● ●●●

●
●

●●●●●● ●●

●

●
● ●

●● ●
●●

●

● ●● ●● ●●●●●

●

●●
●●● ●

●

● ●●●● ●● ● ●● ●

●

●●
● ●●

●
●●●● ●● ●●●●●●

●
●●●● ●●●

●

●● ●●● ●●
●●●

● ● ● ●
●● ●●●

●
●

●

● ●
●●● ●●●●

●
●

●

●

●●● ●

●
●●●●

●
●●

● ● ●●●●●

●

●●
●

● ●●●●
●

●

●●
●

● ●

●
●

● ●●●●

●
●

●

●●● ●●●●

●
●●

●
●●● ●

●

●●●

●

●●●● ●●●●●●●●
●

●●● ●●● ●●●●
●

●●
●

●●

●

●
●

●●●●
●

●

●
●●

●

●

●

●●●
●

●●

●

●●● ●

●

● ●●●●●●●

●

●● ● ● ● ●
●

●

●●●●●●
●

●●●●●●●
●●●● ●●

●●
●●●

●
●●

●●●●
●

●●● ●
●

●●●● ●
●

●●● ●●●

●

●● ●● ●●● ●●
●

● ●●

●

● ●●● ●●

●

●

●●● ● ●
●

●

●●●● ● ●●● ●●
●

●

●

●●● ●●● ●

●

●● ●●●

●

●

●

● ● ●
●● ●● ●●●●●●●

●
●

●●● ●●

●
●●

●●

●

● ●
●

●● ●●
●

●

●● ●● ●

●

●● ●● ● ●● ●

●

●● ●●●●● ●●●● ●●

●

●
●

●●●
●

●●●● ●●●● ●●●

●
● ●●

●●●● ●●●● ●●

●

●●●●

●●
●

●
●

●●●●●● ●
●

●● ● ●
●●●●●● ●●

●

●●●
●

●

●

● ●●

●

● ●●
●

● ● ●
●

●●●●
●

●

●● ●●●● ●● ●
●

●

● ●● ●● ●●
●●

●●
●

●

●
●● ●

●
●

●● ●●

●

●● ●●

●

● ●●
●● ●●

●
●●●●● ● ●

● ●●● ●● ●●

●

●
●● ● ●●● ● ●

●
●●●● ●●●●● ●

●

●●●
●

●

●

●●● ●

●

●●

●

●

●

● ●●●●●
●

● ● ● ●
● ●

●● ●

●

●●●●
●

●●

●

●●
●

●●
●

●●●

●

●●●● ●● ●● ●●● ●●● ●● ● ●
●

●●●

●

●
●● ●●

●

●
●●

●
●●●●●●

●

● ●
●●●

●
●●●

●
●● ●●

●

●● ●●●●

●

●● ●
●

●●● ●●● ● ●● ●●●
●

●

●● ●●●
●

● ●● ●●●●

●

●● ●●● ●
●●●

●

● ●●● ●● ● ●●● ● ●● ●● ●●● ●●
●

●●

●

●●●
●

●
●

●

●

●
●

●●

●

● ●●●●●●
●

●● ●●●
●●● ●●●●● ●●●●

●
●●

●
●●●

●
● ●● ●

●

●

●●●● ●●●
●

●●● ●●●
●

● ●
●

● ●●●●●
●

●● ●●●
●

●● ●● ●

●

● ● ●●●●●
●

●●
●●●

●

●

●

●

●
●

●●●●●● ● ●●● ● ●

●

●
●

●●●●●●

●●
●

● ●● ● ●●●●●
●● ● ●

●● ● ●●●

●

●●●
●

●●●
●

●
●

●
● ●●

●

●

●●
●

● ●
● ●● ●

●

●●

●

●●●● ● ●●●
●

● ●●

●

● ●
●

●●●
●

●●●

●

● ●● ●●
●

● ●● ●●●
●

● ●●●●●● ●●●
●

●● ● ●●●

●

●●

●

●●
●● ●

●●● ●● ●●●
●

● ●●●●● ●

●
●

● ● ● ●
●● ●● ●

●●●
●

●●● ●● ●● ●●● ●●● ●● ●
●●●●●

●
● ● ●

●

●
●

●●●
●

● ●●
●

● ●●
●

●
●

● ●● ●●

●
●

●●● ●●●
●

● ●● ●● ● ●●● ●●●

●

●●●● ●

●

●●● ●●●● ●●● ●●●●●

●

●
●

●●● ●
●

●

●

●

●

● ●● ●

●

●
●●

●●
●

●● ●● ●● ● ●● ●
●● ●●●●●

●
● ●●● ●●● ●●● ●● ●●●●●●●●●

●
●

●
●

● ●●● ●
●

●●
●

●

●

● ●
●

● ●

●

●● ●

●

● ●●●
●

●●●

● ●

●
●

●●●
● ●

●●●

●

● ●●●● ● ● ● ●●● ● ●●●●

● ●

●● ●●●● ●●

●
●●●● ●●●●● ●●● ● ● ●

●
●

●

●● ●●●

●

●●
●

●
●

●●● ● ●

●

●●●

●

● ●●● ●●●

●
●

●●● ●● ●
●●●● ●

●
●

●
●

●

●●●● ●● ●

●

●● ●● ●● ●●●●

●

●●●
●

● ● ●● ●● ●● ● ●● ● ●●● ●●●
●●

●
●

● ●● ●●●● ●●●●● ●● ●●● ●
●

●●● ●
●

●●●●● ● ●●● ● ●●●● ●●●

●

●●● ●●●●● ●

●

● ●●● ●●
●

●
●

●
●

●● ●●● ●
●

●● ●●● ●

●
●

●●● ●
●

●
●

●●●● ●●

●

●● ●● ● ●●● ●
●

●
●

● ●●●●● ●
●

●● ●

●

●● ●●
●●

●
●●

●
●

● ●●● ● ●
●

● ● ●●

●

●●
●●

●●● ●●●●
●

●
●

●● ●●

●

●● ●
●

●
● ●

●

● ●●● ●● ● ●
●

● ●●●
●●

●

● ●● ●●●
● ●

●●● ● ●
●

●
●●●●● ●

●
●● ●● ●●●

●
● ●●●● ●● ●●

●

●●●●
●

●

●

● ● ●
●

● ●● ●●● ●●

●

● ●●
●

●

● ●●●

●

●●● ●●●

●

●●●● ●

●

● ●● ●●

●

● ●●● ● ● ●●

●

● ●●●●● ●●● ●●
●

● ●

●

●●
●●●● ●●●●
●●● ●●●●

● ●
● ●●

● ●
●● ●●●● ●●●●●

●
●●●● ●

●
●

●
●

●●
●

●● ●●
●

●
●●

●
●

● ●●

●

● ●●●
●

● ●●● ●●●●●

●

●●
●

●● ●
●●●● ●

●

● ●● ●●●
●

●●
●●

●● ●●●●●●●
●

●

●● ● ●

●
●

● ●
●

● ●
●

●●●●●● ●
●

●●●●● ● ●
● ●

●
●●

●

● ●

●●

●● ●●
●

●●●
●●●● ●●● ●●●

●

●● ●●

●

●●● ●●● ●●●●●● ●● ●● ●

●

● ●●

●

● ●● ●● ●
●

●●●
●●

●

●●
●

●
●

●
●●●

●
● ●

●

● ● ●
● ●● ●●●

●

● ●● ●● ●●●● ●● ●
●

●● ● ●● ●● ●● ● ●●● ●● ●● ●●● ●● ●● ●● ● ●●● ●● ● ●●●● ●●● ●●●● ●●● ● ● ●●● ●● ●●● ● ●●●●● ●● ●● ●● ● ●● ● ●● ● ●●● ● ●●● ● ● ●●● ●● ●● ● ●●● ● ●● ●●●● ●● ●● ●● ●●● ●●● ●●● ●● ●● ●●● ●●●● ●●● ●● ●● ●● ●●● ●●● ●● ●●●● ●● ●●● ● ●●● ●●● ●● ● ●●● ●● ● ●● ●●● ●● ●●●● ●● ●● ● ●● ●● ●● ●● ●● ● ●●●● ● ●● ●● ●●● ● ●● ● ●● ●●●●● ● ●● ●● ●● ●●●● ● ●●● ●● ●● ● ●●●● ●● ●● ●●● ● ●●● ● ●● ● ●●● ●●● ●● ● ●●● ●● ● ●●● ● ●● ● ●● ●● ●●● ●● ●●● ● ●● ●● ●●● ● ●●●● ● ●● ●●●●● ●● ● ●●● ● ●● ● ●●● ●● ●● ●●● ●●● ●● ●● ●●● ●● ●● ●●● ●●● ●● ●● ● ●●● ●● ●●● ● ●

●●●●● ●●
●●●● ●●● ●●●● ●● ●● ●● ●●
●●● ●● ●●● ●● ●● ● ●●● ●● ●● ● ●●●● ● ●●●●● ●● ● ●●●●● ●● ●●● ● ●● ●● ●● ●● ●●● ● ●●

● ●● ● ● ●●●● ●
●●●● ●● ●● ●●● ●● ● ●●

●●● ●●●● ● ●●●● ●●● ● ●● ● ●●●● ●●● ●●●● ● ● ●●●
● ● ● ●●●● ●● ●●● ● ●●●● ●●● ●● ●●● ●●

●
●● ●●● ● ● ●●●

●
●● ● ●●● ●● ●● ●●●

●● ●●● ●●●●● ●● ●●● ●● ●●●●● ●●● ●● ●● ●●●● ●● ●● ●●●● ●● ● ●● ● ●●● ●● ●● ●● ●● ●●●● ●● ● ●●●●● ●● ●●● ●●●●● ●●● ●● ●●● ●●●● ●● ● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●●● ●●●● ● ●● ●● ●●●● ●● ●● ●●● ●● ● ●●● ●●● ● ●● ●●●● ●● ●●●● ●● ●● ●● ●●● ●● ●●● ●●● ●●●● ● ● ●●●●●● ●● ● ●●●●● ●●●

●●●

●

●

●●
● ●●

●●

●
●

●
● ●●

●
●

●

●
●

●●●

●

●

●●●
●● ●

●
●●

●● ●●

●●

●
●●●●

●

●
●●

●

●

●
● ●●

●

● ● ●●●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●●

●

●
●

●
● ●●
●

●●

●
●

●●
●

●

●
●● ●●

●●
●●

●

●
●● ●

●
● ●●

●
●

●

●

●●
●

●●
●

●

●

●

●
●

●

●●●

●

●
●●

●

●

●
●

●
●

●
●

●●
●●

●
●

●

●

●
●●

●

●

●

●
●●

●● ●●
●

●

●●
●●

●

●

●●

●

●●

●
●

●

●
●●

●

●

●

●

● ●● ●●●● ●● ●●● ●● ●●● ●●●● ●● ●●●●● ●●● ●● ● ●●●● ●● ●● ●●● ●●● ●● ●● ● ●● ●●● ●● ●●●● ●● ● ● ●●● ●●● ●●●●●● ●●● ●● ●● ●● ● ●● ● ●●● ●●●●● ●● ●● ● ●● ●● ●● ●●●●● ●●● ● ●●●●● ●● ●●●●● ●● ●● ●● ●● ●● ● ●●●●● ● ●●● ●●● ● ●● ●●●●

●

●●
●

●●

●

● ●●●●

●

●

●

●
●

●

●●●●
●

●

●

●

●●●●●●●●●●●
●

●●
●

●●●
●

●●

●
●

●●●●●

●

●
●

●

●

●

●
●

●

● ●●
●

●

●

●
●

●

●

●

●

●

●●
●

●●
●

●
●

●●●●●

●

●

●

●●
●

●

●
●

●●

●

●●●

●

●●●●

●

●●
●

●

●●

●
●

●
●

●

●●●●●●●●●●

●

●

●

●●

●

●●●●● ●
●

●

●

●●●●●●
●

●
●

●

●

●
●

●●●
●●●●●●●●●

● ●
●

●

●●●

●

●●

●

●●

●

●

●

●

●●

●

●●● ●
●●●

●

●

●
●●●

●

●●

●

●
●

●

●●●
●

●●

●

●

●

●
●

●
●

●
●●●●●

●

●●

●

●
●

●

●●
●

●

●

●

●
●●●

●

●●
●●●

●

●
●

●●●

●
●

●

●

●

●●●●●
●●

●

● ●●●●
●●●

●●

●

●●

●
●

●

● ●
●

●

●

●●●●

●

●●
●

●

●

●●

●

●

●

●

●
●

●
●

●●
●

●●● ●●●
●●

●

●

●

●

●
●●●

●●
●●●●●●●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●●●●
●

●

●

●●

●
●

●

●●
●

●●●

●

●

●

●

●
●

●
●●

● ●

●

●

●

●●●●

●

●●●

●

●●●
●

●●

●
●●

●●

●

●●

●

●●●

●

●●●●

●
●

●●●●

●
●●

●

●
●

●

●●●●●●

●
●

●

●●
●

●
●

●
●

●

● ●●
●●●●●●

●●
●

●
●

●

●

●

● ●

●●●●
●●

●●●
●

●●●●

●

●

●
●

●
● ●

●

●

●

●●
●

●

●
●

●
●

●

●

●●● ●

●

●

●

●●

●
●

●●●

●

●●●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●●

●

● ●●

●

●

●

●

●● ●●●

●

●●●●●
●

●●●●●

●

●
●

●
●●

● ●
●

●

●●
●

●
●●

●

●●●
●

●●●
●●

●

●

●●●●●
●

● ●

●

●

●

●
●

●

●
●

●

●

●●●
●●

●

●
●

●●●

●

●

●

●

●

●● ●

●

●●●●●●●●

●

●
●

●●●●

●

●
●

●

●

●

●
●

●

●

●●●●●●

●

●
●●●

●

●
●

●

●

●

●
●

●

●

●
● ●●●●

●

●●
●

●
●●●

●

●●●●

●

●

●
●

●●●
●●

●

●

●●●

●
●●●●●●

●

●
●●

●

●

● ●●●

●

●●

●

●
●

●

●

●
●

●

●●

●

●
●●

●

●

●●●

●

●

●
●●

●

●●●●●●

●

●

●
●●

●
●

●

●

●

●
●

●

●●

●

●

●

●●●●●

●

●
●

●

●●
●

●

●

●

●

●●●
●

●●●

●

●●

●

●
●●●

●

●

●●●●●●●●●●●

●

●●●●

●

●●

●

●●
●

●

●

●
●

●●
●●

●

●

●

●●
●

●

●

●

●

●●
●●

●

● ●●
●●●●

●

●

●
●

●
●●●●

●

●

●

● ●●
●●●

●
●

●
● ●

●● ● ●

●

●

●

●

●

●

●

●●●●

●

●●●
●

●

●

●

●

●

●

●

●●

●

●●●●
●

●●

●

●●
●●

●

●●

●

●●
●

●
●

●
●

●●

●

●

●
● ●
●●●●●●●●●●

●

●●

●

●●●●●●●
●●
●

●
●

●

●

●

●●●

●●●
●

●

●
●

●●●

●

●
●●

●

●

●
●

●

●
●●●

●
●

●

●

●
●●

●

●●
●

●
●

●

●

●●●
●

●

●●
●●

●●●
●●●●●

●

●
●●

●

●●
●

●

●

●●

●
●

●
●●●

●
●

●
●

●

●

●

●

●

●●●

●

●●●

●

●

●

●●

●

●●
●

●
●

●

●

●
●

●

●

●

●
●

●●●

●

●

●
●

●●
●

●●●●
●

●
●

●

●

●●

●

●

●

●

●

●●
●

●

●

●●●

●

●●

●

●

●
●

●●
●●

●

●●●●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●●●●
●

●●●●●●
●●●

●●
● ●● ●●

●

●●

●

●
●●●●

●●
●●●

●

●
● ●●●●●

●

●

●

●

●
●

●

●●●●●●●●●●
●●

● ●
●

●

●●●●●

●

●
●

●

●
●●

●

●

●
●

●

●
●

●●●

●

●●●●

●

●

●●●
●

●

●

●●●●●
●●●●

●

●

●
●

●●
●

●

●

●
●●●●●

●
●● ●●

●

●● ●●
●

●

●

●

●

●●●
●

●

●

●●●●

●

●

●

●
●

●

●

●
●

●●●●
●

●●

●●

●

●
●

●●
●●

●

●

●●
●●

●

●
●

●
●

●

●

●
●

●●
●

●●●●
●

●
●

●

●●●●●
●●

●

●●●●

●

●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●

●

●●●●●●●
●●

●

●●
●

●
●

●

● ●●
●●●

●

●

●

●

●●●●●●
●

●●
●

●
● ●● ●●●●●●●●●

●●●●●●

●

●●

●

●

●

●●●

●
●

●

●

●

●
●

●●●
●

●● ●●
●●

●

●
●●

●
●

●

●

●

●
●

●

●●●●
●●●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●●●●●●●●●●●

●

●

●

●

●●

●●

●

●
●

●

●

●
●

●●●
●

●●●●●●
●

●●

●

● ●
●●●●●

●

●●●

●

●

●

●

●

●

●
●●●●●●●

●●●

●

●●
●●● ●●●

●

●

●

●
●

●●●
●●

●
●●

●

●
●●

●

●

●

●●●●●
●●

●

●●
●

●●●●●

●

●●●●●

●

●

●●

●

●
●●●●

●

●●●●

●
●

●●●●
●

●

●●●●●●●●
●●

●
●

●●●
●●●

●

●

●

●●●

●

●

●
●

●
●●●●●

●

●

●
●

●
●

●
●●●

●●
●

●

●

●
●

●

●

●●

●

●
●

●●●●
●●

●

●●

●●

●

●
●

●

●

●

●
●●

●

●

●
●●●●

●

●
●

●
●

●

●●●●
●●

●

●

●
●

●

●

●●●
●

●

●

●●●
●●

●
●

●●●●

●
●

●

● ●

●●●

●

●
●●

●

●
●

●

●

●

●

●

●●
●

●
●●●

●
●

●

●●

●

●●●●●●●
●

●●●●●●●●●●

●

●

●

●●●

●

●

●

●

●

●
●●●●

●
●●

●

●

●

●

●
●

●

●

●
●

●
●

●●●●●

●

●●
●

●

●
●

●●●●●●
●

●

●
●

●
●

●

●●
●

●

●

●

●●

●

●

●●●●●
●

●
●●
●

●

●

●

●●●

●

●

●

●

●

●●
●

●●●●●●

●

●●●

●

●

●

●

●

●●●●● ●●●
●

●●
●

●

●●●
● ●

●●
●

●

●

● ●
●

●

●

●●
●●

●

●

●

●●

●

●

●●●●●

●

●●●●●●●●

●

●●●

●

●
●

●
●

● ●
●●●●●●

●
●●

●

●●

●

●●
●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●●●●●

●

●
●

●
●

●●

●

●●●
●●

●

●
●

●●●●●
●

●

●●
●●

●●●

●●

●●

●

●

●●
●

●
● ●●

●

●
●

●

●

●

●●

●

●●

●

●●●
●

●

●

●● ●
●

●●●

●

●

●●● ●
●●

●

●●● ●
●

●

●

●
●

●

●●●●

●

●

●

●●●

●

●●●
●

●
●

●●●●●

●
●

●
●

●●
●●●●●

●

●
●●●●●

●

●
●●●●●

●

●
●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●●

●
●

●

●

●●
●●●●●

●
●●●●●

●

●

●

●
●●●● ●

●

●

●

●

●

●●
●

●●
●

●

●●

●

●

●

●

●

●●●●

●

●●

●
●

●●●●

●

●●●
●

●
●

●●●●●
●

●

●

●

●●●

●
●●●

●
●●

●

●●

●

●

●●●

●

●●●●●
●

●●●
●

●

●●●

●

●●●●●

●

● ●
●●●●

●●
●

●

●●

●●●●●●
●

●

●

●●●●●

●

●
●

●●

●

●
●●●● ●●

●
●●

●
●

●
●

●

●●●

●

●

●

●●
●

●

●●

●

●●●●
●

●

●
●●

●

●●●

●

●

●
●

●●●●

●

●

●●●●
●

●●●

●

●
●●●●●

●

●

●

●

●●

●●

●

●●

●

●

●

●●

●

●●●●●●●●●●
●

●

●●
●

●

●●
●

●

●

●

●●●●
●

●●

●

●●●
●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●●
●●

●
●

●
●

●●●●●●●

●

●

●

●

●

●●
●●●

●
●

●

●●●

●

●●●●

●

●●●●●●
●

●●●●●

●

●
●●●●●

●

●

●●●●●

●

●●●

●

●●●

●

●

●

●
●

●

●●

●
●

●●●●●●

●

●

●

●● ●
●●

●

●●
●

●

●
●

●●
●

●

●
●

●

●
●

●●

●
●●

●● ●
●

●
●●●●●

●●

●

●●●●●●

●
●

●●●●●
●

●

●
● ●

●

●
●

●

●

●●

●●

●
●

●

●●

●

●●

●

●

●

●●● ●
●

●●

●

●●● ●
●

●

●

● ●●●●

●

●●●
●●●●●

●

●

●
●●

●● ●●●●

●

●
●

●
●●●

●
●●

●

●

●

●●●●

●

●●

●

●
● ●

●●●● ●●

●

●●●●

●

●

●
●

●●●
●

●

●
●

●
●●●●

●●

●

●
●●

●

●●●●
●

●
●

●

●

●●
●

●

●

●
●

●

●

●
●●●

●

●

●

●
●

●

●●●

●

●
●●● ●

●●
●●

●

●
●

●

●

● ●
●

●
●●● ●

●

●
●● ●●

●

●●●●● ●●●●●
●●

●
●

●●● ● ●● ●● ●
●

● ● ●
●

●●●● ●●●● ●●

●

● ●●● ●

●
●

● ●●
●

● ●●●
●

●●
●

● ●●●● ●●● ●●
●

● ●

●

●● ●

●

●
●●●●

●

●●●
● ●

●

●

●
●

● ●●

●
●●● ●●●●

●
●

●●
●

●

●
●

●

● ●● ●●●
●●

● ●● ●● ●●●

●

●

●
●

●●●
●●

●

●

● ●
●●

●

●

●

●

● ●●● ● ●●●
●

●
●●●●●●● ●●

●

●●

●●

● ●● ●●
●

●
●

●

● ●●
●●

● ●

●

●
●

● ●●●
●●●●●●

● ●

●

●

●● ●●
●

●●
●

●
●●

●

●

●●
●

●
● ●

●

●●
●●●

● ●●● ● ●●● ●

●

●●●●●●●

●
●

●
●●●

●

●

●
●

●
●

●
●

●● ●
●

●●●
●●

●
●●

●
●

●●●●

●

●● ●●
●

●
●

●

●●
●●●●

● ●● ●● ●● ●

●

●● ●● ●●●●

●

●●
●

● ●● ●

●

●
●●

●●
●

●
●

●

● ●
●

●●
●

●
● ●

●

● ●
●●●●

●
● ●●

●●
● ●●

●

●●●●
●

●

●

●

●
●

● ●● ●

●

●●
● ●

●

● ●
●

● ●●●●

●

●
●

●●●

●●
●

●

●

●

●
●

●
● ●

●●● ●● ●●
●

●

●

● ●
● ● ●● ●

●
●●●● ●● ●

●

●●
●

●

●●● ●● ●●● ●●

●

● ●

●

● ●●

●
●

●
●●

●
●

●
● ●●●

●

●●

●●
●

●
●●●

●

●●
●●●● ●●●

●
●

● ●●●●●●●●●● ●
●

●

●

●●● ●●
●

●
●

●●
●

●

●●● ●●●●●●●●
●●

●

●●

●

●
●

●● ●●

●
●

●● ●● ●

●

●

●
●

●● ●
●

● ●●
●

●
● ● ●● ●●● ● ●

●
● ●

●
●

●

● ●● ●●● ●● ●
●

●● ●
●●●●● ●●

●●● ● ●● ●●
●

●
●

●●●

●

●
●

●
●

● ●●●●●● ●●● ●●
●

●●
●●● ●

●

●
●●

●

●

●●● ●● ●●● ● ●
●●

●
● ●●

●

● ●
●

●

●
●●● ●●●● ● ●●● ●

● ●●
●●

●

●●
●

●

●● ●
●

●●●● ●● ●●

●

●

●

●
●

●

●● ●●
●

●

●

● ●●●

●
●

●
●

●
●

●

●
● ●

●

●● ●

●
●

●

●
●

●● ●●●

●

●
●

●●
●

●

●

●●
●

● ●●● ●

●

●● ●●

●

●
●

●
●

● ●● ●

●

●● ●● ●●●● ●

●
●

●●
●

●●●
●

●
●

●●
●●

●
●

●
●● ●● ●●

●● ●●
●●● ●

● ●●●

●

● ●● ●● ●● ● ●
●● ●

●

●
●●● ●●● ●

● ●

●

● ●●

●

● ●●
●

●●
● ●

●●●●
●

●

●●

●

● ●
●

●

●

● ●

●

●●● ●●

●

●●
●

●● ●● ●●
●

●●●

●

● ● ●●
●●●● ●● ●●

●
●●●

●
●

●

●

●

●

●● ●
● ●

●
●

●
●

●
●

●●
●

●

●

● ●●●
●

●
●

●●● ●● ●●●●●● ●●

●
●

●● ●
●

●
●● ●

●
●●

●
● ●

●

●

●

●
●

● ●
●

●● ●●●● ●●●
●

●●
●

●

●●● ●
●

●
● ●

●
●●

●●

●

● ●●

●

● ●● ●●●

●

●●
●

●
●

●●
●●

●
●●

●

●●●
●●

●●●
●

●

●●●●●●●●
●●

●
●

● ●●●●● ●●
●● ●●

●●
● ●●

●

●
●

●●●
●

●

●
●●

●
●

●●●● ●● ●
●●● ●● ●●●

●

●
●

●●
●

●●●
●

● ●●
● ●

●
●●

● ●

●

●● ●● ●●●●●●

●

●
● ●

●●●●
●

●

●●●
●

●

●

●

●
●

● ●●● ●
● ●

●
●

●
●

● ●
●

●●● ●●
●

● ● ● ●

●●●● ●

●

●●●● ● ●

●

●●● ●●●●●● ●● ●●● ●● ●●●●●●
●

●●●●● ● ●
●●

● ●●

●●

●

●

●●●

●

●●●

●
●

●●● ● ●
●

●● ●●●
●

●● ● ●●● ●●● ●
●

●●●●●●● ●●
●

●● ●
●

●

●● ●
●

●
●

●
●● ●

●

●●●
●

●●● ●●●●●● ●

●

●●●●●

●

●
●

●
●

●
●

●
●

●●
●

●

●

●● ●●●●
●

● ●●●● ●●●

●

● ●●●
●

●● ●●●

●

● ●
●●●

●

●
● ●●●● ●● ●●●●●

●

●
● ●

●

●
●●●●●

●
●●●●

●●

●●●

●

●
●●●●● ●●

●

●
●

●

●

● ●●● ●●●

●

●●●●

●

●●
●

●
●●●

●

●
●●

●●●●●
●●● ●

● ●

●
●

●
●● ●● ●●●

●
●

●●●● ● ●●●●
●

●

●
●●

●

●●● ● ●●

●

● ●
● ●

●

●

●

●

●●●●
●

●
●●

●

●

● ●● ● ●●● ● ●●● ●●
●

●●

●

● ●●●●

●
●●● ●● ●●●

●● ●
●●

●
●●

●

●
●

●●
●●●●●

●●●●

●

● ● ●
●

●
●

●
●●●●

●

●● ●

●

● ●●

●

●●● ●

●

●
●● ●●

●

●
●●●

●

●●●●●●● ●●

●
● ●

●●●● ●●● ● ●

●

●●●

●

●●●●
●

● ●
● ●●

●

●
●

● ●●●●●●● ●● ●

●

●● ●●●

●

●●
●

●●

●●●●●●
●●●●● ●●●● ●●● ●●

●
●

●●●●●●
●

●●

●

● ● ● ●
●

●
●●

●
●

●●
●

●

●●●
●

● ●

●

●●
●●●●●●●●●● ●●●

●
●●

●
● ●●

●

●●

●

●●
●

●
●

●●●

●

●

● ●

●
●●

●
●

● ●
●●

●
●

●
●

●

●

●●●

●

●●●●● ●●

●

●

●

● ●●●

●

● ●●●
●

●●●
●●

●●● ● ●●

●

●●●●●
●●

●
●

●

● ● ●●

●

●●
●

●●●●● ●

●

● ●

●

● ●
●

●● ●
●

●●

●

●●●● ●●●● ● ●●●●●●●●●●●●●
●●●

●
●●●● ●●

●

●●
●

● ●● ● ●
●

●
●●●●● ● ● ●●

● ●●● ●

●

●●
●

●● ●● ●● ● ●●●●●●●●

●

●

● ●● ●

●

●●●●●

●

●
●

●●●● ●

●

●

●

●●●● ●●●●

●

●● ●●●● ●●●● ●●●

●

●● ●●● ●●●●●●●●●●● ● ●
● ●

●

●● ●●●●
●

●●

● ●

●
●●

●●●

●

● ● ●●
●

● ●●●
●

●● ●

●

●
●●● ●● ●●●

●●

●

●●

●

●

●
●●● ●●● ● ●●●

●
● ●●

●
●

●
●

●●
●

●●
●

●

● ● ●

●

●

●
●

● ●●

●

● ●●●●
●●●● ●

●

●
●●●● ●●●●●● ●● ●

●
●●●

●

●
● ●●

●●
●

●
●●

●
●●● ●●●

●●
● ●●

●●

●●● ●●

●

●●●● ●
●

●● ●●● ●●●●

●

●

●

●

●
●

●

●

●● ●

●
●

● ● ●
●

● ●
●

●

●

●
●

●
●

●
●

●

●● ●●● ●
●●●

●

●●

●

●●●
●●

● ●●●●●
●●● ●

●
●

●
●●● ●● ●

●

●● ●●●●●

●

●
●●●

●●
●●●●

●

●●

●

●●●●●● ●●
●

●

● ●●●●● ●●●● ●●●●

●

●●
●

●

●

● ● ●
● ●●●

●

● ●
●

●●●● ●● ●● ●●● ●●●●● ●● ●●●●●●●
●

●

●
●● ●●
●

● ●●
●

●

●

●●●
●

●● ●● ●●●●●

●

●

●

●

●

●●●
●● ●● ●● ●

●

●

● ●●
●

●
●

●

● ●● ●● ●●
●●●● ●●●●

●●
●

●
●

●
●

●
●●●

●
●●

●
●● ●●●

●

●
●

●●●●●

●
●● ●

●● ● ●

●

●

●●
●●

●

●●● ●
●

●●●●●●

●
●●●●

●

●
●

●● ●●
●

●●●

●

●●● ●●●

●●

●●●●● ●●●●●
●

●●

● ●●
●●

●●
●

●

●

●●
●

●●

●

● ● ●●●● ●●●● ● ● ●
●●●

●

●
●

●●●

●
●

●

●●

●

●●●●●● ●
●

●
●●●●●

● ●
●●

●

●●●

●

●●●● ●● ●●
●

●
●

●

●

●●●●● ●●

●●
●●

●
●●

●

● ●●● ● ●●
● ●

●●●● ●

●
●●●●

●
●

●● ●●●

●

●●●

●

● ●●●●●●●

●

●●● ●

●

●●
●●

●

●●

●

●
●

●● ●●●●●●

●

●●●●●● ●●

●

●●
●

●●

●

●

●

● ●●●
●

● ● ●●● ●●

●

●
●

●●

●

●●
●

● ●
●

●
●

●
●

●
●

●●●
●

●● ● ● ●

●

●

●●●●●

●

●●●
●●● ●

●●●
●

●●●●
●

●● ● ● ●
● ● ●

●

●●●●●●
●

●

●
●

●●●

●

●● ●

●

●● ●

●

●● ●●●●
●

● ●●●●●●● ●●

●

●

● ●
●●● ●

●
●

●

●

●●

● ●● ●
●●

● ●●●● ●●

●

●● ●● ●

●

●

●

●

●● ●●●●●●●●

●

● ●●●● ● ●
●●

●
●

●
●●●● ●

●
●

●
●●

●

●●

●

●
●

●

●

●●●●● ●●●●
●

●●
●●● ●

●●
●

●
●

●
●●●● ● ●
●

●

●●● ●● ●●

●

●● ● ●
●● ●

●
●●

●
●●●

●●●● ●● ●●●

●

●● ●●●●● ●● ●● ●
●●

●

●● ●

●●

●
●

●

●

●

● ●●●●●●●● ●● ●●●●●●● ●●●●

●

●●● ●●●●

●

● ●●●
●●

●

●

●●●
●

● ●●●●
●

● ●
● ●●

●●●

●

●

●●●● ●●

●

●
●

●●
●

●●

●
●

● ●●

●

●
●●●

●●●

●

● ●● ● ●●●
●

●●●

●

●

●

●

● ●

●

●
●●●

●

●
●● ● ●●●● ●●● ●

●

●●●

●

●
●●

●●● ●● ●●

●

●
●

●
●

●●
●

●●●

●

● ●
●

● ●●
●

● ●●● ● ●●●
●

●●
●

●● ●● ●●●●● ●
●

●●●●●
●

● ● ●●● ●

●

●●●

●

●● ●●●●●
●

●●● ● ●

●

● ●
●● ●● ●

●●● ●
●

● ●●●●
●

●● ●

●

●

●●●●● ●

●
●

● ●

●
●

● ●
●

●
● ●●●● ●●

●●● ●

●

● ●●
●●● ●●

●

●●
●

●

●

●
●●●

●●
●●

●
●●●

●●●● ●●●

●

●
●

●●●● ●●
●

●●●●
●

●●
●

●

● ●
●●

●●

●
●

●
●

●

●

● ●
●

●●●●● ●●●

●
●

● ●● ●●
●●

●

●

●● ●● ●●● ●●●● ●

●

●● ●●●●●●●●
● ●

●
●

●●

●
●

● ●●●● ●
●

●●●

●●
● ●

●

●●●● ●●
●●
●

●

●

●●

●

●●
●

●

●●

●

●●●● ●●●●●

●

●

●

●

●

●
●●

●

●

●

●● ●●● ●●

●

●

●
●

●
●

● ● ●
●

●

●
●

●●●● ●

●

● ●●

●

●

●●
●

●
●

●●●
●

●
●

●

● ●●●●

●

●●●●●
●

●●●

●

●●●
●

● ●●●

●

●●● ●●

●

● ●●

●

●●●

●

●●● ●● ●●● ●

●

●●●●● ● ●●●● ●●●●
●●●● ●●●●

●

●●●

●

●●
●

●●●

●

●● ●● ●●●

●
●●●●●●

●●● ●●●● ●●● ● ● ●
●●●●●●

●

● ●
●

●
●

●
●

●

●
●

●●●

●

●●● ●●

●

●

●

●●●● ●●
●

●● ●● ●●●●● ●

●
●

●●●
●● ● ●●

●

●●● ● ●
●

● ●

●

●●●
●●● ●
●

●●

●

●

●

●●●

●

●
●

●
●

●●

●●
●●●● ●●●● ●

●
●

●

●●

●

●

●●

●

●
●

● ●

●

●

●
●

●

●●
●

●● ●●●● ●
●

● ●●

●

● ●●

●

●● ●● ●
●

●
●● ●●

●
●●● ●●●●

●
●●●●● ●

●

●

● ●
●

●●●●
●

●
●

●●●●●●●
●

●
●

●●● ●

●

●●

●
●

●
● ●●●

●

●●●
●

●●

●

●
●●● ● ●●

●

●
●

●●
●●●● ●●

●●●●●

●

●●●● ●
●

●● ●●●●
●

●●
●●

●

●

●

●

●

●

● ●●●● ●

●
●

●●●●●
●●● ●●●● ●●● ●●

●

●●●●●●●●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

im2col
activation
pooling
c2f
bias
softmax
softmax_B
dedb(L)
c2f_B
im2col_B
pooling_B
activation_B

Fig. 7. Measured Time (Points) and Determined Model (Lines) of CUDA
components on TSUBAME-KFC/DL: Only randomly chosen 5% samples
except for first 5 samples are shown for visibility. The x-axis is normalized
with the max amount for each component (eg. 1013 MB for im2col, and 23.4
KB for softmax)

executions as its representative value. Fig. 8 shows the pre-
diction error of cublasSgemm with matrix size (m,n, k) =
(2

2x+1
4 , 2

2y+1
4 , 2

2z+1
4). The third quartile of the prediction error

is 13.6%. However, around the kernel boundary, shown on Fig.
4, prediction error is relatively high, because our model cannot
determine actual kernel and its behavior exactly.

5 10 15 20

6
8
10
12

2
4
6
8
2
4

●

●

●

●

●

●

●

●

●

●

●

●

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %
100 %
110 %

������	�

������	�

������	�

Fig. 8. Prediction Error of cublasSgemm on TSUBAME-KFC/DL

Fig. 9 shows predicted computation time of CNN-A, CNN-
B, and CNN-C. Note that measured time shows average time
of 5 minutes execution, and max NSubbatch is determined by
GPU memory size. Going from NSubbatch = 6 to 7, the mea-
sured time of CNN-A increased discontinuously (Fig. 10). This
is because dedw(2), the most time-consuming component,
calls kernels named scal kernel and sgemm largek lds64 if
NSubbatch = 6, however on NSubbatch = 7 it calls two
sgemm sm35 ldg tn 32x16x64x8x16, which take 0.15 sec
more than that on NSubbatch = 6. Therefore, the proposed
model cannot follow the behavior until NSubbatch gets suffi-
ciently larger so that the model uses measured cublasSgemm
time which is affected by the behavior. In any cases, since
SGEMM components are more time consuming than other
CUDA components, entire prediction error is greatly affected
by cublasSgemm prediction error.

Table VII shows summary of the prediction error of CNN
computation. In all cases average prediction error is lower than
12%.

Epoch time is then determined as follows:

TEpoch =
NFile ⇥ TUpdate

NMinibatch

=
NFile ⇥ TGPU

NNode ⇥NGPU ⇥NSubbatch
(11)

V. EVALUATION

To evaluate our performance model, we run SPRINT on
TSUBAME 2.5 and TSUBAME-KFC/DL. We used ILSVRC
2012 training dataset for the evaluation. In all evaluations
mentioned below, we ignore the time to predict metrics with
the constructed model, because our model is consisted of
simple formulae hence it takes almost no computational cost
for each prediction.

Table V shows three 15-17 layers CNNs we use for the
evaluation.

TABLE V
OVERVIEW OF CNN ARCHITECTURE

x0 Lc L #{pl > 1} NParam(106)
CNN-A 396 15 15 5 16.1
CNN-B 396 15 15 5 12.1
CNN-C 346 17 17 5 12.5

Table VI shows their execution environments. Note that one
Tesla K80 GPU has two NVIDIA GK210 chips, therefore we
use it as two distinct GPUs.

TABLE VI
EVALUATION ENVIRONMENTS

TSUBAME 2.5 TSUBAME-KFC/DL
Number of nodes 1408 42
CPU Intel Xeon CPU X5670 ⇥ 2 Intel Xeon E5-2620 v2 ⇥ 2
GPU NVIDIA Tesla K20X ⇥ 3 NVIDIA Tesla K80 ⇥ 4

ECC enabled ECC disabled
Auto boost enabled

SSD HP 572071-B21 ⇥ 2 Intel SSDSC2BB480G4 ⇥ 2
Interconnect 4X QDR InfiniBand ⇥ 2 4X FDR InfiniBand
OS SUSE Linux Enterprise CentOS 6.4

Server 11 SP3
C compiler icpc 14.02 icpc 14.0.0
CUDA CUDA 7.0 CUDA 7.0
MPI MVAPICH2 2.0rc1 MVAPICH2 2.0rc1

A. Evaluation of the CNN Computation Model
We measured computation time of the CUDA components

using CNN-A (and a similar model which has fully-connected
layers for c2f and c2f B) for 5 minutes on one GPU on
both of TSUBAME 2.5 and TSUBAME-KFC/DL. We varied
NSubbatch = 1, 2, · · · , 5 on TSUBAME 2.5, NSubbatch =
1, 2, · · · , 6 on TSUBAME-KFC/DL. We determined their
model parameters with all measured samples (Fig. 7). The
figure shows that their computation time fits the corresponding
model well, since they are all memory access intensive and
don’t have dynamic memory access patterns.

In addition, we measured cublasSgemm computation time
with matrix size (m,n, k) = (2

x
2 , 2

y
2 , 2

z
2), where x, y, z =

0, 1, 2, · · · and cover all possible matrix sizes in CNN-A,
CNN-B, and CNN-C. We use average time of 5 continuous

0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.005

0.010

0.015

The amount of memory access (Normalized)

C
om

pu
ta

tio
n

tim
e

[s
ec

]

●●●●●●●

●

●●●●●
●

●

●●●

●

●●

●

●●
●

●

●●

●

●

●

●
●

●●●

●

●●●●●●●

●
●

●● ●●

●

●●●●●●●●
●

●●
●

●

●●

●

●●

●

●●●●●● ● ●
●●●

●

●
●

●
●●●●●●

●

● ●●

●

●●●●●●

●

●●
●

●
●●● ● ●●

●
●●●

●
●

●

●

●

● ● ●
●●●●

●
●●●●●●●●●●

●

●

●

●

●

●

●
●●●

●

●●●
●●

●
●●

●●
●●

●

●

●

●●●

●

●●

●

●●●●●●

●

●●●

●

●● ● ●
● ●

●●●
●●●●●

●
●●

●
● ●●●

●
●

●●
●●

●

●●●●●
●

●

●
●

●
●●●●●●●●

●

●●
●

●
●

●

●
●●●●

●●
●

●●

●●
● ●

●

●

●●●

●

●●
●

● ●●
●●

●

● ●●●●●●●●●

●

●●●●

●

●

●●
●

● ●

●●

●

●●●
●

●●
●●●

●

●●

●

●

●●
●

● ●● ●
●● ●●

●

●

● ●●●●●●●

●

●
●

●

●● ●●●●●●

●

●

●

●

●

●

● ●●●

●

●
●●

●●

●●●
●●●●●●

●

●●●
●●●●●●
●●

●

●

● ●●
●●

●

● ●●●
●●●

●
●●

●

●●
●

●●

●
● ●

● ●●●●●

●

●●●●●● ●●
●●●●

●

●●●

●

●●
●

● ●●

●

●●
●● ●

●● ●●

●

●

●

●● ●
●

●

● ● ●
●●●●

●●

●●●●●
●

●●●●●●●●
●● ●

●●
●

●●
●

●●
●● ●

●
●

●●

●

● ●
●

●

●

●

● ●●

●

●

●

●●●
●

●

●

●●●●

●

●●

●
●●

●

●

●
●● ●●●●●●

●

●

●● ● ●
●

●
●

●

●●

● ●

●

●
●●●●●

●

●●●● ●●
●

●●

●

●
●

●
●

●●●
●●

●●

●

●

●

●●

●

●
●

●

●

●●●● ●●

●

● ●●●●
●

●

●
●

●

●●●● ●●
●●●●●●●●

●

● ●●
● ●

●

●●
●

●● ●●●●●●

●

●

●

●
●●●●●●

●

●● ●●●
●●

●

●

●●●●●●●●
●

●

●
●

●●
●●

●

●

●●
●

●●●●●
●

●●●●●

●

●●●●
●

●● ●
●●

●

●●

●

●●
●

●●●●

●

●
●●●

● ●

●

●

●●●

●

●
●

●
●

●
●

●
●●

●
●

●
●

●●●●●
●

●

●●●
●

●●●●●

●

●●●●●●●●●●

●

●●●●●●●
●

●●
● ●

●●●●

●

● ●●

●

●

●

● ●● ●●

●

●
●●●
●

●

●
●

●

●

●●
●●●●●●
●

●

●

●

●●

●

●● ● ●
●●

●

●●●
●●●●

●
●● ●●●

●●

●

●●●
●

●●
●

●

●●
● ●●●●

●
●

●

●●

●

●
●●●

●

●●● ●●●●●
●●●
●

●

●●●
●

●●
●

●●

●

● ●●

●●

●●●●●●●● ●●

●
●●●
●

●

●
● ●

●●●
●

●●●

●

●
●●●

●
●

● ● ●●

●
●

● ●●
●●●●●

●

●●●●
●●

●

●
●

●●

●●
●

●

●

●

●●
●

●●●●●

●
●●

●
●

●

●
●

●●●

●

●●

● ●

●
●●

●●

●

●

●●
●

●

●

●

●
●

●●

●
●●

●

●

●

● ●●●
●

●●
●●

●●●
●

●●
●

●● ●
●

●

●
●

●●

●

●●

●

●●●●●●●●

●

●●●●●● ●

●

●

●

●

●●●

●

● ●●

● ●

●●●●●

●

●●●●●●●● ●

●

●

●

●
●

●

●● ●●●●● ●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●●●
●

●●
●

●

●

●

●●

●

●●●● ●●●

●

●● ●●

●

●
●

●●

●

●●●
●

●

●

●●●

●

●●
●●

●

●

● ●●

●

● ●●●●●

●

●●
●

●
●

●●●●●●●●

●
●●●

●

●●
●

●●●

●

●●

●
●

●● ●● ●
●●

●

●
●

●●●●●●●

●
●●

●

●●●

●

●
●●●

●● ●

●

●
●●●

●●

●●●●●

●
●

●●●

●

●

●●●

●

●●●
●

● ●●
●

●●●●●

●

●●

●

●● ●●
●●●●

●
●●●

●●●

●

● ●●●

●

●●
●

●
●

●●●● ●●●

●

●●
●●

●

●

●

●●
●

● ●●● ●●●
●

●●●
●

●

●

●

●
●

● ●

●

●

●● ●●

●

●●

●
●●

●

●
●

●

●

●●

●

●●●

●

●
●

●●

● ●●● ●

●

●

●

●●●

●

●●●

●

●●●●

●

●

●

●●

●

●
●

●●●

●

●●
●●●●●●
●● ●

●
●

●●
●●●
●

●

●●●
●

●●●●●
●●

●
●●

●

●

●●●●●

●

●

●●

●

●

●
●

●●●

●

●●●

●

●

●●●●●●●●●●●●
●●

●
●

●●●●
●

●●
●

●●●●●

●

●●●● ●●

●

●●●●
●

●

●

●

●●● ●

●

●●

●

●

●●●●

●

● ●●
●

●

●

●

●●

●

●●●
●

●●●●

●
●

●

●

●
●

●
●

●●●● ●● ●●● ● ● ●●
●●●●● ● ●
●

●
●

●

●●
●

●
●

●
●

●

● ●

●

●

●

●

●
●

●

●
●

●●●

●
●

●

● ●●●●● ●●

●

●
●

●●●

●

●●

●

●
●

●● ●●●●● ●●
●●

●

●

●

●

●

●●

●

●●

●

●
●

●
●●

● ●
●● ●●●

●

●●

●

●

●

●
●●●●●●●●●

●

●
●●●

●
●

●

●● ●●●● ●●●●●●
●

●

●

●

●

●

●

●●
●

●

●

●

●●●●

●

●●
●

●●● ●●●●
●

●●●●●●●

●

●

●●
●●●●●

●

●

●
●●●●●●

●
● ●

●●

●

●● ●
●

●

●

●●●●●
●

●●●
●●

●
●

●

●●●●

●

●
●

●

●
●

●●
●●● ●●

●

●

●●
●

●

●
●●

●

●●●●

●

●●●●●●●● ●●

●

●

●●●
●

●

●●
●●

●

●

●●

●●
●

●

●

●

●●
●

●● ●●●●●●●

●

●●●
●

●●●●●

●

●
●

●

●

●

●
●

●
●

●●● ●●

●

●

●

●

●

●●●

●
●

●
●

●
●

●

●

●● ●

●●

● ●●
●

●

●

●●

●
●

●

●● ●●●●●●●

●

●●●●

●

● ●● ●
●

●
●

●●●
●

●
●

●
●●●

●●
●

●
●●●●●

●

●

●
●

●●
●

●●●●●●●

●

●

●

●

● ●
●●●

●

●●
●

●●● ●●
●

●●

●

●
●

●●●●●

●

●●●●
●●●●
●

●●

●

●●●●
●

●● ●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●●●●●● ●●● ●● ●
● ●

●

●
●

●
●●

●

●
●●

●
●

●

●
●

●●

●
●●●●●

●
●

●
●●

● ●●●● ●●●●●●

●

●
●●●●●

●

●●

●

●●

●

●
●●●

●

●

● ●●

●

●●●●
●

●

●

●

● ●●

●

●●●

●

●●● ●● ●●●
●

●

●
●

●●

●

●
●●

●

●●

●
●

●
●

●

●●●●●

●

●●●●●
●●●●

●

●
●

●●●

●

●●

●

●
●

●

●●● ●
●●●●

● ●

●●

●

●

●● ●●●
●

●

● ●● ●●
●

●●●● ●●

●

●
● ● ●

●

●●●●●

●
●●

●

●

●●●

●●

● ●
●

●

●
●● ●●●

●

●
●●● ●●●●

●
●●

●
●●

●

●

●
●

● ●

●

●

●●
●

●

●

●

●● ●

●

●

●
●

●

●

●

● ●●●

●
●

●
●

●

●

●

●

●
●●

●
●●

●

●

● ●● ●●
●●●

●● ●

●

●●●●

●

●
●

●
●●●●

●

●●●

●

●
●

●●●

●

●
●

●

●

●

●

●
● ●●●●●

●

●
●

●●●

●●
●●

●●
●●●● ●●●●●

●●
●

●●●
●

●

●●●●

●

●

●
●

●

●●

●

●●●

●

●●●●
●

●●●●●●
●

●●●●

●

●

●

● ●

●
●

●●
●

●●
●

●

●

●

●●

●

●● ●●●●

●

●
●

●●●●●●●●●

●

●

●●
●●

● ●
●

●●●
● ● ●

●● ●●●●●●

●

●●● ● ●
●●● ● ●
●

●

●

●

●
●

●●

●

●
●

●

●
●●●● ●

●

● ●

●

●●● ●
●

●● ●●
●

●
●●

●

●●
●

●
●● ●

●● ●

●

●

●

●
●

●●●

●

●

●
●

●

●
●●●

●

●●●

●

●●●●●

●

●
●

●●●●●

●

●● ●

●

●

●
●●●●

●

●●

●

●
●●

●

●

●
●

●

●

●●
●

●●

●

●●

●●

●●●

●

●

●●

●

●
●

●●●
●

●

● ●●●
●

●

●●●●
●

●
●

●

●●●●● ●●●●●●●
●

●●

●

●

●

●
●●●●●●

●

●●
●●● ●●●

●●
●●

●

●●
●●●
●

●

●
●

●●

●

●
●

●
●●●● ●●●
●

●
●

●
●

●

●●●
●

●

●

●

●● ●●●

●
●●

●●

●

●●●
●●

●●●●
●●

●

●
●

●

●●●

● ●

●●● ●

●
●

● ●●
●

●

●

●●

●

●

●
●

●
●

● ●

●

●●
●

●●●●

●

●

●

● ●
●

●

●●

●

●●

●

●

●●● ●● ●●
●

●●●●●●●●●●●
●

●

●

●●

●
●●●●

●

●●●●
●●●●●
●

●

● ●
● ●● ●

●

●●●

●

●●

●

●

●
●

●
●●●●
● ●

● ●●

●

●●
●

●●●●● ● ●
●●●●● ●●●

●

●●●●●●

●

●

●●

●

●
●● ●

●●
●●●

● ●

●
●●

●

● ●

●

●
●

●●●

●●
●

●
●

●
●●

●●
●

●●●●

●

●●

●

●
●●

●●●

●

●●●

●

●●●●●●●

●

●
●

●●●●● ●●●

●

●●●
●

●
●

●
●

●
●●

● ●●●●
●

●●

●

●●

●

●●●●●

●

● ●●●
●

●●●●

●

●● ●●

●
●

●
●●●●●●

●

●
●●

●
●● ●●●

●

●

●●

●

●
●●● ● ●● ●●

●

●

●● ●●●● ●●●●●●●●●
●

●●● ●

●

●

●
●

●

●

●● ●●●● ● ●

●

●●●●●●

●

●●●●● ● ●●

●

●●●●
●

● ●
●

●●●
●

●●●
●

● ●●

●
●●

●●●●

●

●
●

●
●●● ●

●
●

●
●● ●●●●● ●●●● ●●● ● ●●

●
●●●● ●●● ●●

●

● ●●
●

●●● ●

●

●●● ●●●
●

●

●●●●● ●●●●

●●
●●

●
●●●●

●
●●

●

●● ●●

●

●●● ●
●

●

●●

●
●

●●●

●

●●●●●●●●●●
●

● ●●
●

●

●
●

●● ●●●●
●

●

●
●●

●
● ●●● ● ●● ●

●
●●

●

●

●

●●●●● ●●● ●●● ●

●●
●●

●
● ●

●●●●
●

●●●●●
●

●●● ● ●●● ●
●●●

●
●● ● ●●●

●●
●

●

●

●

●●●● ●●● ●●●●●●●●● ●
●

●●
●

●
●

● ●●

●
●

●● ●●

●

● ●●●

●

●●●
●

●●● ●●●
●

●

●●●● ●●●●●●● ●●● ●●● ●●● ● ●●

●

●●● ● ●●
●

●

●

●
●

●●●●●
●●

●

●
●● ●● ●●

●
●●●● ● ●●●

●
●

●
●●●

●

●●
● ●●●● ● ●●●

●
●●●

●
●●

●
●

●
●

●

●

●

●● ●●●●

●

●●●

●

●
●

●

●●●● ●●

●

●●●●
●●●●●●

●

●

●●

●

●●● ●●●● ●●

●
●

●●●
●

●●●●●●●●●
●

● ●●

●

●

●

●● ●●● ● ●●●●● ●● ●● ●●

●

●●●●●
●●● ●●●●●

●
●●●●

●
● ●● ●● ● ●●●●● ●● ●
●●● ●● ●● ●●

● ●
●

●

●

●

●

●

●

●

●●●● ●●●
● ●

● ●● ●●● ●●● ●●
●

●

●● ●● ● ●
●● ●●● ● ●
●●●● ●●● ●●●● ●● ●● ●●●●●

● ●
●●●

●

●
●

● ●●● ●●●
●

● ●●
●

● ●● ●● ●●●
●

●●● ●● ●●●●●●● ●

●

●●
●

●●
●

●●
●

●
●

●
●● ●

●●

●●● ●●●
●

● ●●

●●

●●● ● ●
●

●

●
●

●

●

●●
●

●● ●

●

●●● ●● ●●

●

●● ●●
●

●●
●

●
●

●●●●

●

●

●

● ● ●●
●

●

●

●●
●

● ●●

●

● ●● ●●●

●

● ●

●

●●
●

● ●
●

●
●

●
●● ●

●●● ● ●●●●● ●● ●●●●●
●●

●
●

●● ●●● ●●
●

●●●●●● ●●

●

●●
● ●

●

●

●●●●●● ● ●●●●

●

●●● ●●●●●● ●●
●

●●● ●● ● ●●
●●

●

●●
●●

●●● ●

●

●●
●●●●

●
●

●●
●

● ● ●●●
●

●●● ●● ●●●●●● ●●● ●●●●
●

●

●
●

●
●

●●● ●

●

● ●

●

● ●●●●●●

●
●●●●●●●●●●

●
● ●●● ●●

●●● ●● ●● ● ●
●●●●● ●● ●●

●
●●

●● ●● ●●
●

● ●●●
●

●● ●●● ●● ●● ●●●
●

●● ●● ●●
●

● ● ●●●●●● ●●●●
●●

●

●●●● ●●

●

●●

●●

● ●
● ●●●

●

●
●

●●

●

●●●●
●●●● ● ●● ●

●●●

●

●●●●● ●
●

●● ●●

●

●●●●●● ● ●● ●

●

●● ●● ●●●
●

●●

●

● ●●
●●● ●●

●
●●

●
●● ●

●●
● ●● ●

●

● ●
●●●●

●
●

●
●

●

●● ●●●● ●●

●

●
●●●●

●

● ● ●●●
●

● ●●

●

●●

●

●● ●●●

●

●● ●●●● ●
●

●

●

●
●

● ●● ●● ●●●●●●●●
●● ●● ● ●●●●●● ● ●●●

●
●

●
●● ●● ●

●

● ●●●

●

●

●

●● ●
● ● ● ●●●●●● ●● ●●●● ● ●

●
● ●● ●●

● ●

●

●
●

● ●
●

● ●● ●● ●

●

●●
●

●●
●

●●

●

● ●● ●

●

●● ●●

●

●
●●● ●●●●

●

●

●●●

●

●●●● ●●●
●

●●●

●

● ●●●
●

●
●

●●●● ●●●●●
●

●●● ●● ●●●
●

● ●● ●●●●●● ●● ●● ● ●●●● ●● ●
●

●

●●● ●

●

●

●

●●●●●

●

●●●

●

●
●

●●
●●●

●
●●●● ● ●●

●

●● ●●●●●● ●● ●

●

●

●

●
●

●●●

●

● ●●● ●●
●

●
●

●

●

●
●●● ● ●●● ● ●●●●●●●●●

●
●●

●

● ●●●●●

●

●

●

● ●●

●

●●●

● ●

● ●
●

●
●●●●●● ●● ●●●

●
●●●●●

●

● ●● ●
●

●● ●●●●●● ●●●● ●●●●● ●● ●

●

●●● ●●●●● ●●●

●

●
●

● ●●● ●●●● ● ●
●

●●● ●●

●

● ●●●● ●
●

●●●●

●

●
●●●●● ●●●

●
●●

●

●

●

●● ●●

●

● ●

●
●

●● ●● ●

●

● ●
●●

●
●

●●●
●

● ● ●● ●●● ● ●
●●● ●●

●
● ●●●

●
●●

●

●●●● ●●●

●

● ●● ●
●

●●

●

● ● ●
●●●●

●● ●
●●●●● ●

●
●●

●
● ●●● ●● ●

●

● ●●●

●
●●●● ●

●●

●● ●
●●●●

●
●

●
●●● ●● ●●●●●

●

●● ●
●

●●●●● ●●

●
●

●
●●●●●●● ●

●

●●
●

●●●●●● ● ●
●●●● ●● ●

●

●

●

●●● ● ●●●

●

● ● ● ●

●

●
●

●

●

●

●

●
●

●●●● ●●●● ● ●
● ●

●●●

●

●●●●●●●
●

●●●● ●●
●● ●●●

●
●

●●● ● ●●●●●● ●●●● ●● ● ●●●●●●●

●●

●● ●●●
●

● ●●●● ●● ●●●●●●●●

●

● ●●●

●
●

●●●●●● ●●

●

●
● ●

●● ●
●●

●

● ●● ●● ●●●●●

●

●●
●●● ●

●

● ●●●● ●● ● ●● ●

●

●●
● ●●

●
●●●● ●● ●●●●●●

●
●●●● ●●●

●

●● ●●● ●●
●●●

● ● ● ●
●● ●●●

●
●

●

● ●
●●● ●●●●

●
●

●

●

●●● ●

●
●●●●

●
●●

● ● ●●●●●

●

●●
●

● ●●●●
●

●

●●
●

● ●

●
●

● ●●●●

●
●

●

●●● ●●●●

●
●●

●
●●● ●

●

●●●

●

●●●● ●●●●●●●●
●

●●● ●●● ●●●●
●

●●
●

●●

●

●
●

●●●●
●

●

●
●●

●

●

●

●●●
●

●●

●

●●● ●

●

● ●●●●●●●

●

●● ● ● ● ●
●

●

●●●●●●
●

●●●●●●●
●●●● ●●

●●
●●●

●
●●

●●●●
●

●●● ●
●

●●●● ●
●

●●● ●●●

●

●● ●● ●●● ●●
●

● ●●

●

● ●●● ●●

●

●

●●● ● ●
●

●

●●●● ● ●●● ●●
●

●

●

●●● ●●● ●

●

●● ●●●

●

●

●

● ● ●
●● ●● ●●●●●●●

●
●

●●● ●●

●
●●

●●

●

● ●
●

●● ●●
●

●

●● ●● ●

●

●● ●● ● ●● ●

●

●● ●●●●● ●●●● ●●

●

●
●

●●●
●

●●●● ●●●● ●●●

●
● ●●

●●●● ●●●● ●●

●

●●●●

●●
●

●
●

●●●●●● ●
●

●● ● ●
●●●●●● ●●

●

●●●
●

●

●

● ●●

●

● ●●
●

● ● ●
●

●●●●
●

●

●● ●●●● ●● ●
●

●

● ●● ●● ●●
●●

●●
●

●

●
●● ●

●
●

●● ●●

●

●● ●●

●

● ●●
●● ●●

●
●●●●● ● ●

● ●●● ●● ●●

●

●
●● ● ●●● ● ●

●
●●●● ●●●●● ●

●

●●●
●

●

●

●●● ●

●

●●

●

●

●

● ●●●●●
●

● ● ● ●
● ●

●● ●

●

●●●●
●

●●

●

●●
●

●●
●

●●●

●

●●●● ●● ●● ●●● ●●● ●● ● ●
●

●●●

●

●
●● ●●

●

●
●●

●
●●●●●●

●

● ●
●●●

●
●●●

●
●● ●●

●

●● ●●●●

●

●● ●
●

●●● ●●● ● ●● ●●●
●

●

●● ●●●
●

● ●● ●●●●

●

●● ●●● ●
●●●

●

● ●●● ●● ● ●●● ● ●● ●● ●●● ●●
●

●●

●

●●●
●

●
●

●

●

●
●

●●

●

● ●●●●●●
●

●● ●●●
●●● ●●●●● ●●●●

●
●●

●
●●●

●
● ●● ●

●

●

●●●● ●●●
●

●●● ●●●
●

● ●
●

● ●●●●●
●

●● ●●●
●

●● ●● ●

●

● ● ●●●●●
●

●●
●●●

●

●

●

●

●
●

●●●●●● ● ●●● ● ●

●

●
●

●●●●●●

●●
●

● ●● ● ●●●●●
●● ● ●

●● ● ●●●

●

●●●
●

●●●
●

●
●

●
● ●●

●

●

●●
●

● ●
● ●● ●

●

●●

●

●●●● ● ●●●
●

● ●●

●

● ●
●

●●●
●

●●●

●

● ●● ●●
●

● ●● ●●●
●

● ●●●●●● ●●●
●

●● ● ●●●

●

●●

●

●●
●● ●

●●● ●● ●●●
●

● ●●●●● ●

●
●

● ● ● ●
●● ●● ●

●●●
●

●●● ●● ●● ●●● ●●● ●● ●
●●●●●

●
● ● ●

●

●
●

●●●
●

● ●●
●

● ●●
●

●
●

● ●● ●●

●
●

●●● ●●●
●

● ●● ●● ● ●●● ●●●

●

●●●● ●

●

●●● ●●●● ●●● ●●●●●

●

●
●

●●● ●
●

●

●

●

●

● ●● ●

●

●
●●

●●
●

●● ●● ●● ● ●● ●
●● ●●●●●

●
● ●●● ●●● ●●● ●● ●●●●●●●●●

●
●

●
●

● ●●● ●
●

●●
●

●

●

● ●
●

● ●

●

●● ●

●

● ●●●
●

●●●

● ●

●
●

●●●
● ●

●●●

●

● ●●●● ● ● ● ●●● ● ●●●●

● ●

●● ●●●● ●●

●
●●●● ●●●●● ●●● ● ● ●

●
●

●

●● ●●●

●

●●
●

●
●

●●● ● ●

●

●●●

●

● ●●● ●●●

●
●

●●● ●● ●
●●●● ●

●
●

●
●

●

●●●● ●● ●

●

●● ●● ●● ●●●●

●

●●●
●

● ● ●● ●● ●● ● ●● ● ●●● ●●●
●●

●
●

● ●● ●●●● ●●●●● ●● ●●● ●
●

●●● ●
●

●●●●● ● ●●● ● ●●●● ●●●

●

●●● ●●●●● ●

●

● ●●● ●●
●

●
●

●
●

●● ●●● ●
●

●● ●●● ●

●
●

●●● ●
●

●
●

●●●● ●●

●

●● ●● ● ●●● ●
●

●
●

● ●●●●● ●
●

●● ●

●

●● ●●
●●

●
●●

●
●

● ●●● ● ●
●

● ● ●●

●

●●
●●

●●● ●●●●
●

●
●

●● ●●

●

●● ●
●

●
● ●

●

● ●●● ●● ● ●
●

● ●●●
●●

●

● ●● ●●●
● ●

●●● ● ●
●

●
●●●●● ●

●
●● ●● ●●●

●
● ●●●● ●● ●●

●

●●●●
●

●

●

● ● ●
●

● ●● ●●● ●●

●

● ●●
●

●

● ●●●

●

●●● ●●●

●

●●●● ●

●

● ●● ●●

●

● ●●● ● ● ●●

●

● ●●●●● ●●● ●●
●

● ●

●

●●
●●●● ●●●●
●●● ●●●●

● ●
● ●●

● ●
●● ●●●● ●●●●●

●
●●●● ●

●
●

●
●

●●
●

●● ●●
●

●
●●

●
●

● ●●

●

● ●●●
●

● ●●● ●●●●●

●

●●
●

●● ●
●●●● ●

●

● ●● ●●●
●

●●
●●

●● ●●●●●●●
●

●

●● ● ●

●
●

● ●
●

● ●
●

●●●●●● ●
●

●●●●● ● ●
● ●

●
●●

●

● ●

●●

●● ●●
●

●●●
●●●● ●●● ●●●

●

●● ●●

●

●●● ●●● ●●●●●● ●● ●● ●

●

● ●●

●

● ●● ●● ●
●

●●●
●●

●

●●
●

●
●

●
●●●

●
● ●

●

● ● ●
● ●● ●●●

●

● ●● ●● ●●●● ●● ●
●

●● ● ●● ●● ●● ● ●●● ●● ●● ●●● ●● ●● ●● ● ●●● ●● ● ●●●● ●●● ●●●● ●●● ● ● ●●● ●● ●●● ● ●●●●● ●● ●● ●● ● ●● ● ●● ● ●●● ● ●●● ● ● ●●● ●● ●● ● ●●● ● ●● ●●●● ●● ●● ●● ●●● ●●● ●●● ●● ●● ●●● ●●●● ●●● ●● ●● ●● ●●● ●●● ●● ●●●● ●● ●●● ● ●●● ●●● ●● ● ●●● ●● ● ●● ●●● ●● ●●●● ●● ●● ● ●● ●● ●● ●● ●● ● ●●●● ● ●● ●● ●●● ● ●● ● ●● ●●●●● ● ●● ●● ●● ●●●● ● ●●● ●● ●● ● ●●●● ●● ●● ●●● ● ●●● ● ●● ● ●●● ●●● ●● ● ●●● ●● ● ●●● ● ●● ● ●● ●● ●●● ●● ●●● ● ●● ●● ●●● ● ●●●● ● ●● ●●●●● ●● ● ●●● ● ●● ● ●●● ●● ●● ●●● ●●● ●● ●● ●●● ●● ●● ●●● ●●● ●● ●● ● ●●● ●● ●●● ● ●

●●●●● ●●
●●●● ●●● ●●●● ●● ●● ●● ●●
●●● ●● ●●● ●● ●● ● ●●● ●● ●● ● ●●●● ● ●●●●● ●● ● ●●●●● ●● ●●● ● ●● ●● ●● ●● ●●● ● ●●

● ●● ● ● ●●●● ●
●●●● ●● ●● ●●● ●● ● ●●

●●● ●●●● ● ●●●● ●●● ● ●● ● ●●●● ●●● ●●●● ● ● ●●●
● ● ● ●●●● ●● ●●● ● ●●●● ●●● ●● ●●● ●●

●
●● ●●● ● ● ●●●

●
●● ● ●●● ●● ●● ●●●

●● ●●● ●●●●● ●● ●●● ●● ●●●●● ●●● ●● ●● ●●●● ●● ●● ●●●● ●● ● ●● ● ●●● ●● ●● ●● ●● ●●●● ●● ● ●●●●● ●● ●●● ●●●●● ●●● ●● ●●● ●●●● ●● ● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●●● ●●●● ● ●● ●● ●●●● ●● ●● ●●● ●● ● ●●● ●●● ● ●● ●●●● ●● ●●●● ●● ●● ●● ●●● ●● ●●● ●●● ●●●● ● ● ●●●●●● ●● ● ●●●●● ●●●

●●●

●

●

●●
● ●●

●●

●
●

●
● ●●

●
●

●

●
●

●●●

●

●

●●●
●● ●

●
●●

●● ●●

●●

●
●●●●

●

●
●●

●

●

●
● ●●

●

● ● ●●●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●●

●

●
●

●
● ●●
●

●●

●
●

●●
●

●

●
●● ●●

●●
●●

●

●
●● ●

●
● ●●

●
●

●

●

●●
●

●●
●

●

●

●

●
●

●

●●●

●

●
●●

●

●

●
●

●
●

●
●

●●
●●

●
●

●

●

●
●●

●

●

●

●
●●

●● ●●
●

●

●●
●●

●

●

●●

●

●●

●
●

●

●
●●

●

●

●

●

● ●● ●●●● ●● ●●● ●● ●●● ●●●● ●● ●●●●● ●●● ●● ● ●●●● ●● ●● ●●● ●●● ●● ●● ● ●● ●●● ●● ●●●● ●● ● ● ●●● ●●● ●●●●●● ●●● ●● ●● ●● ● ●● ● ●●● ●●●●● ●● ●● ● ●● ●● ●● ●●●●● ●●● ● ●●●●● ●● ●●●●● ●● ●● ●● ●● ●● ● ●●●●● ● ●●● ●●● ● ●● ●●●●

●

●●
●

●●

●

● ●●●●

●

●

●

●
●

●

●●●●
●

●

●

●

●●●●●●●●●●●
●

●●
●

●●●
●

●●

●
●

●●●●●

●

●
●

●

●

●

●
●

●

● ●●
●

●

●

●
●

●

●

●

●

●

●●
●

●●
●

●
●

●●●●●

●

●

●

●●
●

●

●
●

●●

●

●●●

●

●●●●

●

●●
●

●

●●

●
●

●
●

●

●●●●●●●●●●

●

●

●

●●

●

●●●●● ●
●

●

●

●●●●●●
●

●
●

●

●

●
●

●●●
●●●●●●●●●

● ●
●

●

●●●

●

●●

●

●●

●

●

●

●

●●

●

●●● ●
●●●

●

●

●
●●●

●

●●

●

●
●

●

●●●
●

●●

●

●

●

●
●

●
●

●
●●●●●

●

●●

●

●
●

●

●●
●

●

●

●

●
●●●

●

●●
●●●

●

●
●

●●●

●
●

●

●

●

●●●●●
●●

●

● ●●●●
●●●

●●

●

●●

●
●

●

● ●
●

●

●

●●●●

●

●●
●

●

●

●●

●

●

●

●

●
●

●
●

●●
●

●●● ●●●
●●

●

●

●

●

●
●●●

●●
●●●●●●●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●●●●
●

●

●

●●

●
●

●

●●
●

●●●

●

●

●

●

●
●

●
●●

● ●

●

●

●

●●●●

●

●●●

●

●●●
●

●●

●
●●

●●

●

●●

●

●●●

●

●●●●

●
●

●●●●

●
●●

●

●
●

●

●●●●●●

●
●

●

●●
●

●
●

●
●

●

● ●●
●●●●●●

●●
●

●
●

●

●

●

● ●

●●●●
●●

●●●
●

●●●●

●

●

●
●

●
● ●

●

●

●

●●
●

●

●
●

●
●

●

●

●●● ●

●

●

●

●●

●
●

●●●

●

●●●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●●

●

● ●●

●

●

●

●

●● ●●●

●

●●●●●
●

●●●●●

●

●
●

●
●●

● ●
●

●

●●
●

●
●●

●

●●●
●

●●●
●●

●

●

●●●●●
●

● ●

●

●

●

●
●

●

●
●

●

●

●●●
●●

●

●
●

●●●

●

●

●

●

●

●● ●

●

●●●●●●●●

●

●
●

●●●●

●

●
●

●

●

●

●
●

●

●

●●●●●●

●

●
●●●

●

●
●

●

●

●

●
●

●

●

●
● ●●●●

●

●●
●

●
●●●

●

●●●●

●

●

●
●

●●●
●●

●

●

●●●

●
●●●●●●

●

●
●●

●

●

● ●●●

●

●●

●

●
●

●

●

●
●

●

●●

●

●
●●

●

●

●●●

●

●

●
●●

●

●●●●●●

●

●

●
●●

●
●

●

●

●

●
●

●

●●

●

●

●

●●●●●

●

●
●

●

●●
●

●

●

●

●

●●●
●

●●●

●

●●

●

●
●●●

●

●

●●●●●●●●●●●

●

●●●●

●

●●

●

●●
●

●

●

●
●

●●
●●

●

●

●

●●
●

●

●

●

●

●●
●●

●

● ●●
●●●●

●

●

●
●

●
●●●●

●

●

●

● ●●
●●●

●
●

●
● ●

●● ● ●

●

●

●

●

●

●

●

●●●●

●

●●●
●

●

●

●

●

●

●

●

●●

●

●●●●
●

●●

●

●●
●●

●

●●

●

●●
●

●
●

●
●

●●

●

●

●
● ●
●●●●●●●●●●

●

●●

●

●●●●●●●
●●
●

●
●

●

●

●

●●●

●●●
●

●

●
●

●●●

●

●
●●

●

●

●
●

●

●
●●●

●
●

●

●

●
●●

●

●●
●

●
●

●

●

●●●
●

●

●●
●●

●●●
●●●●●

●

●
●●

●

●●
●

●

●

●●

●
●

●
●●●

●
●

●
●

●

●

●

●

●

●●●

●

●●●

●

●

●

●●

●

●●
●

●
●

●

●

●
●

●

●

●

●
●

●●●

●

●

●
●

●●
●

●●●●
●

●
●

●

●

●●

●

●

●

●

●

●●
●

●

●

●●●

●

●●

●

●

●
●

●●
●●

●

●●●●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●●●●
●

●●●●●●
●●●

●●
● ●● ●●

●

●●

●

●
●●●●

●●
●●●

●

●
● ●●●●●

●

●

●

●

●
●

●

●●●●●●●●●●
●●

● ●
●

●

●●●●●

●

●
●

●

●
●●

●

●

●
●

●

●
●

●●●

●

●●●●

●

●

●●●
●

●

●

●●●●●
●●●●

●

●

●
●

●●
●

●

●

●
●●●●●

●
●● ●●

●

●● ●●
●

●

●

●

●

●●●
●

●

●

●●●●

●

●

●

●
●

●

●

●
●

●●●●
●

●●

●●

●

●
●

●●
●●

●

●

●●
●●

●

●
●

●
●

●

●

●
●

●●
●

●●●●
●

●
●

●

●●●●●
●●

●

●●●●

●

●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●

●

●●●●●●●
●●

●

●●
●

●
●

●

● ●●
●●●

●

●

●

●

●●●●●●
●

●●
●

●
● ●● ●●●●●●●●●

●●●●●●

●

●●

●

●

●

●●●

●
●

●

●

●

●
●

●●●
●

●● ●●
●●

●

●
●●

●
●

●

●

●

●
●

●

●●●●
●●●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●●●●●●●●●●●

●

●

●

●

●●

●●

●

●
●

●

●

●
●

●●●
●

●●●●●●
●

●●

●

● ●
●●●●●

●

●●●

●

●

●

●

●

●

●
●●●●●●●

●●●

●

●●
●●● ●●●

●

●

●

●
●

●●●
●●

●
●●

●

●
●●

●

●

●

●●●●●
●●

●

●●
●

●●●●●

●

●●●●●

●

●

●●

●

●
●●●●

●

●●●●

●
●

●●●●
●

●

●●●●●●●●
●●

●
●

●●●
●●●

●

●

●

●●●

●

●

●
●

●
●●●●●

●

●

●
●

●
●

●
●●●

●●
●

●

●

●
●

●

●

●●

●

●
●

●●●●
●●

●

●●

●●

●

●
●

●

●

●

●
●●

●

●

●
●●●●

●

●
●

●
●

●

●●●●
●●

●

●

●
●

●

●

●●●
●

●

●

●●●
●●

●
●

●●●●

●
●

●

● ●

●●●

●

●
●●

●

●
●

●

●

●

●

●

●●
●

●
●●●

●
●

●

●●

●

●●●●●●●
●

●●●●●●●●●●

●

●

●

●●●

●

●

●

●

●

●
●●●●

●
●●

●

●

●

●

●
●

●

●

●
●

●
●

●●●●●

●

●●
●

●

●
●

●●●●●●
●

●

●
●

●
●

●

●●
●

●

●

●

●●

●

●

●●●●●
●

●
●●
●

●

●

●

●●●

●

●

●

●

●

●●
●

●●●●●●

●

●●●

●

●

●

●

●

●●●●● ●●●
●

●●
●

●

●●●
● ●

●●
●

●

●

● ●
●

●

●

●●
●●

●

●

●

●●

●

●

●●●●●

●

●●●●●●●●

●

●●●

●

●
●

●
●

● ●
●●●●●●

●
●●

●

●●

●

●●
●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●●●●●

●

●
●

●
●

●●

●

●●●
●●

●

●
●

●●●●●
●

●

●●
●●

●●●

●●

●●

●

●

●●
●

●
● ●●

●

●
●

●

●

●

●●

●

●●

●

●●●
●

●

●

●● ●
●

●●●

●

●

●●● ●
●●

●

●●● ●
●

●

●

●
●

●

●●●●

●

●

●

●●●

●

●●●
●

●
●

●●●●●

●
●

●
●

●●
●●●●●

●

●
●●●●●

●

●
●●●●●

●

●
●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●●

●
●

●

●

●●
●●●●●

●
●●●●●

●

●

●

●
●●●● ●

●

●

●

●

●

●●
●

●●
●

●

●●

●

●

●

●

●

●●●●

●

●●

●
●

●●●●

●

●●●
●

●
●

●●●●●
●

●

●

●

●●●

●
●●●

●
●●

●

●●

●

●

●●●

●

●●●●●
●

●●●
●

●

●●●

●

●●●●●

●

● ●
●●●●

●●
●

●

●●

●●●●●●
●

●

●

●●●●●

●

●
●

●●

●

●
●●●● ●●

●
●●

●
●

●
●

●

●●●

●

●

●

●●
●

●

●●

●

●●●●
●

●

●
●●

●

●●●

●

●

●
●

●●●●

●

●

●●●●
●

●●●

●

●
●●●●●

●

●

●

●

●●

●●

●

●●

●

●

●

●●

●

●●●●●●●●●●
●

●

●●
●

●

●●
●

●

●

●

●●●●
●

●●

●

●●●
●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●●
●●

●
●

●
●

●●●●●●●

●

●

●

●

●

●●
●●●

●
●

●

●●●

●

●●●●

●

●●●●●●
●

●●●●●

●

●
●●●●●

●

●

●●●●●

●

●●●

●

●●●

●

●

●

●
●

●

●●

●
●

●●●●●●

●

●

●

●● ●
●●

●

●●
●

●

●
●

●●
●

●

●
●

●

●
●

●●

●
●●

●● ●
●

●
●●●●●

●●

●

●●●●●●

●
●

●●●●●
●

●

●
● ●

●

●
●

●

●

●●

●●

●
●

●

●●

●

●●

●

●

●

●●● ●
●

●●

●

●●● ●
●

●

●

● ●●●●

●

●●●
●●●●●

●

●

●
●●

●● ●●●●

●

●
●

●
●●●

●
●●

●

●

●

●●●●

●

●●

●

●
● ●

●●●● ●●

●

●●●●

●

●

●
●

●●●
●

●

●
●

●
●●●●

●●

●

●
●●

●

●●●●
●

●
●

●

●

●●
●

●

●

●
●

●

●

●
●●●

●

●

●

●
●

●

●●●

●

●
●●● ●

●●
●●

●

●
●

●

●

● ●
●

●
●●● ●

●

●
●● ●●

●

●●●●● ●●●●●
●●

●
●

●●● ● ●● ●● ●
●

● ● ●
●

●●●● ●●●● ●●

●

● ●●● ●

●
●

● ●●
●

● ●●●
●

●●
●

● ●●●● ●●● ●●
●

● ●

●

●● ●

●

●
●●●●

●

●●●
● ●

●

●

●
●

● ●●

●
●●● ●●●●

●
●

●●
●

●

●
●

●

● ●● ●●●
●●

● ●● ●● ●●●

●

●

●
●

●●●
●●

●

●

● ●
●●

●

●

●

●

● ●●● ● ●●●
●

●
●●●●●●● ●●

●

●●

●●

● ●● ●●
●

●
●

●

● ●●
●●

● ●

●

●
●

● ●●●
●●●●●●

● ●

●

●

●● ●●
●

●●
●

●
●●

●

●

●●
●

●
● ●

●

●●
●●●

● ●●● ● ●●● ●

●

●●●●●●●

●
●

●
●●●

●

●

●
●

●
●

●
●

●● ●
●

●●●
●●

●
●●

●
●

●●●●

●

●● ●●
●

●
●

●

●●
●●●●

● ●● ●● ●● ●

●

●● ●● ●●●●

●

●●
●

● ●● ●

●

●
●●

●●
●

●
●

●

● ●
●

●●
●

●
● ●

●

● ●
●●●●

●
● ●●

●●
● ●●

●

●●●●
●

●

●

●

●
●

● ●● ●

●

●●
● ●

●

● ●
●

● ●●●●

●

●
●

●●●

●●
●

●

●

●

●
●

●
● ●

●●● ●● ●●
●

●

●

● ●
● ● ●● ●

●
●●●● ●● ●

●

●●
●

●

●●● ●● ●●● ●●

●

● ●

●

● ●●

●
●

●
●●

●
●

●
● ●●●

●

●●

●●
●

●
●●●

●

●●
●●●● ●●●

●
●

● ●●●●●●●●●● ●
●

●

●

●●● ●●
●

●
●

●●
●

●

●●● ●●●●●●●●
●●

●

●●

●

●
●

●● ●●

●
●

●● ●● ●

●

●

●
●

●● ●
●

● ●●
●

●
● ● ●● ●●● ● ●

●
● ●

●
●

●

● ●● ●●● ●● ●
●

●● ●
●●●●● ●●

●●● ● ●● ●●
●

●
●

●●●

●

●
●

●
●

● ●●●●●● ●●● ●●
●

●●
●●● ●

●

●
●●

●

●

●●● ●● ●●● ● ●
●●

●
● ●●

●

● ●
●

●

●
●●● ●●●● ● ●●● ●

● ●●
●●

●

●●
●

●

●● ●
●

●●●● ●● ●●

●

●

●

●
●

●

●● ●●
●

●

●

● ●●●

●
●

●
●

●
●

●

●
● ●

●

●● ●

●
●

●

●
●

●● ●●●

●

●
●

●●
●

●

●

●●
●

● ●●● ●

●

●● ●●

●

●
●

●
●

● ●● ●

●

●● ●● ●●●● ●

●
●

●●
●

●●●
●

●
●

●●
●●

●
●

●
●● ●● ●●

●● ●●
●●● ●

● ●●●

●

● ●● ●● ●● ● ●
●● ●

●

●
●●● ●●● ●

● ●

●

● ●●

●

● ●●
●

●●
● ●

●●●●
●

●

●●

●

● ●
●

●

●

● ●

●

●●● ●●

●

●●
●

●● ●● ●●
●

●●●

●

● ● ●●
●●●● ●● ●●

●
●●●

●
●

●

●

●

●

●● ●
● ●

●
●

●
●

●
●

●●
●

●

●

● ●●●
●

●
●

●●● ●● ●●●●●● ●●

●
●

●● ●
●

●
●● ●

●
●●

●
● ●

●

●

●

●
●

● ●
●

●● ●●●● ●●●
●

●●
●

●

●●● ●
●

●
● ●

●
●●

●●

●

● ●●

●

● ●● ●●●

●

●●
●

●
●

●●
●●

●
●●

●

●●●
●●

●●●
●

●

●●●●●●●●
●●

●
●

● ●●●●● ●●
●● ●●

●●
● ●●

●

●
●

●●●
●

●

●
●●

●
●

●●●● ●● ●
●●● ●● ●●●

●

●
●

●●
●

●●●
●

● ●●
● ●

●
●●

● ●

●

●● ●● ●●●●●●

●

●
● ●

●●●●
●

●

●●●
●

●

●

●

●
●

● ●●● ●
● ●

●
●

●
●

● ●
●

●●● ●●
●

● ● ● ●

●●●● ●

●

●●●● ● ●

●

●●● ●●●●●● ●● ●●● ●● ●●●●●●
●

●●●●● ● ●
●●

● ●●

●●

●

●

●●●

●

●●●

●
●

●●● ● ●
●

●● ●●●
●

●● ● ●●● ●●● ●
●

●●●●●●● ●●
●

●● ●
●

●

●● ●
●

●
●

●
●● ●

●

●●●
●

●●● ●●●●●● ●

●

●●●●●

●

●
●

●
●

●
●

●
●

●●
●

●

●

●● ●●●●
●

● ●●●● ●●●

●

● ●●●
●

●● ●●●

●

● ●
●●●

●

●
● ●●●● ●● ●●●●●

●

●
● ●

●

●
●●●●●

●
●●●●

●●

●●●

●

●
●●●●● ●●

●

●
●

●

●

● ●●● ●●●

●

●●●●

●

●●
●

●
●●●

●

●
●●

●●●●●
●●● ●

● ●

●
●

●
●● ●● ●●●

●
●

●●●● ● ●●●●
●

●

●
●●

●

●●● ● ●●

●

● ●
● ●

●

●

●

●

●●●●
●

●
●●

●

●

● ●● ● ●●● ● ●●● ●●
●

●●

●

● ●●●●

●
●●● ●● ●●●

●● ●
●●

●
●●

●

●
●

●●
●●●●●

●●●●

●

● ● ●
●

●
●

●
●●●●

●

●● ●

●

● ●●

●

●●● ●

●

●
●● ●●

●

●
●●●

●

●●●●●●● ●●

●
● ●

●●●● ●●● ● ●

●

●●●

●

●●●●
●

● ●
● ●●

●

●
●

● ●●●●●●● ●● ●

●

●● ●●●

●

●●
●

●●

●●●●●●
●●●●● ●●●● ●●● ●●

●
●

●●●●●●
●

●●

●

● ● ● ●
●

●
●●

●
●

●●
●

●

●●●
●

● ●

●

●●
●●●●●●●●●● ●●●

●
●●

●
● ●●

●

●●

●

●●
●

●
●

●●●

●

●

● ●

●
●●

●
●

● ●
●●

●
●

●
●

●

●

●●●

●

●●●●● ●●

●

●

●

● ●●●

●

● ●●●
●

●●●
●●

●●● ● ●●

●

●●●●●
●●

●
●

●

● ● ●●

●

●●
●

●●●●● ●

●

● ●

●

● ●
●

●● ●
●

●●

●

●●●● ●●●● ● ●●●●●●●●●●●●●
●●●

●
●●●● ●●

●

●●
●

● ●● ● ●
●

●
●●●●● ● ● ●●

● ●●● ●

●

●●
●

●● ●● ●● ● ●●●●●●●●

●

●

● ●● ●

●

●●●●●

●

●
●

●●●● ●

●

●

●

●●●● ●●●●

●

●● ●●●● ●●●● ●●●

●

●● ●●● ●●●●●●●●●●● ● ●
● ●

●

●● ●●●●
●

●●

● ●

●
●●

●●●

●

● ● ●●
●

● ●●●
●

●● ●

●

●
●●● ●● ●●●

●●

●

●●

●

●

●
●●● ●●● ● ●●●

●
● ●●

●
●

●
●

●●
●

●●
●

●

● ● ●

●

●

●
●

● ●●

●

● ●●●●
●●●● ●

●

●
●●●● ●●●●●● ●● ●

●
●●●

●

●
● ●●

●●
●

●
●●

●
●●● ●●●

●●
● ●●

●●

●●● ●●

●

●●●● ●
●

●● ●●● ●●●●

●

●

●

●

●
●

●

●

●● ●

●
●

● ● ●
●

● ●
●

●

●

●
●

●
●

●
●

●

●● ●●● ●
●●●

●

●●

●

●●●
●●

● ●●●●●
●●● ●

●
●

●
●●● ●● ●

●

●● ●●●●●

●

●
●●●

●●
●●●●

●

●●

●

●●●●●● ●●
●

●

● ●●●●● ●●●● ●●●●

●

●●
●

●

●

● ● ●
● ●●●

●

● ●
●

●●●● ●● ●● ●●● ●●●●● ●● ●●●●●●●
●

●

●
●● ●●
●

● ●●
●

●

●

●●●
●

●● ●● ●●●●●

●

●

●

●

●

●●●
●● ●● ●● ●

●

●

● ●●
●

●
●

●

● ●● ●● ●●
●●●● ●●●●

●●
●

●
●

●
●

●
●●●

●
●●

●
●● ●●●

●

●
●

●●●●●

●
●● ●

●● ● ●

●

●

●●
●●

●

●●● ●
●

●●●●●●

●
●●●●

●

●
●

●● ●●
●

●●●

●

●●● ●●●

●●

●●●●● ●●●●●
●

●●

● ●●
●●

●●
●

●

●

●●
●

●●

●

● ● ●●●● ●●●● ● ● ●
●●●

●

●
●

●●●

●
●

●

●●

●

●●●●●● ●
●

●
●●●●●

● ●
●●

●

●●●

●

●●●● ●● ●●
●

●
●

●

●

●●●●● ●●

●●
●●

●
●●

●

● ●●● ● ●●
● ●

●●●● ●

●
●●●●

●
●

●● ●●●

●

●●●

●

● ●●●●●●●

●

●●● ●

●

●●
●●

●

●●

●

●
●

●● ●●●●●●

●

●●●●●● ●●

●

●●
●

●●

●

●

●

● ●●●
●

● ● ●●● ●●

●

●
●

●●

●

●●
●

● ●
●

●
●

●
●

●
●

●●●
●

●● ● ● ●

●

●

●●●●●

●

●●●
●●● ●

●●●
●

●●●●
●

●● ● ● ●
● ● ●

●

●●●●●●
●

●

●
●

●●●

●

●● ●

●

●● ●

●

●● ●●●●
●

● ●●●●●●● ●●

●

●

● ●
●●● ●

●
●

●

●

●●

● ●● ●
●●

● ●●●● ●●

●

●● ●● ●

●

●

●

●

●● ●●●●●●●●

●

● ●●●● ● ●
●●

●
●

●
●●●● ●

●
●

●
●●

●

●●

●

●
●

●

●

●●●●● ●●●●
●

●●
●●● ●

●●
●

●
●

●
●●●● ● ●
●

●

●●● ●● ●●

●

●● ● ●
●● ●

●
●●

●
●●●

●●●● ●● ●●●

●

●● ●●●●● ●● ●● ●
●●

●

●● ●

●●

●
●

●

●

●

● ●●●●●●●● ●● ●●●●●●● ●●●●

●

●●● ●●●●

●

● ●●●
●●

●

●

●●●
●

● ●●●●
●

● ●
● ●●

●●●

●

●

●●●● ●●

●

●
●

●●
●

●●

●
●

● ●●

●

●
●●●

●●●

●

● ●● ● ●●●
●

●●●

●

●

●

●

● ●

●

●
●●●

●

●
●● ● ●●●● ●●● ●

●

●●●

●

●
●●

●●● ●● ●●

●

●
●

●
●

●●
●

●●●

●

● ●
●

● ●●
●

● ●●● ● ●●●
●

●●
●

●● ●● ●●●●● ●
●

●●●●●
●

● ● ●●● ●

●

●●●

●

●● ●●●●●
●

●●● ● ●

●

● ●
●● ●● ●

●●● ●
●

● ●●●●
●

●● ●

●

●

●●●●● ●

●
●

● ●

●
●

● ●
●

●
● ●●●● ●●

●●● ●

●

● ●●
●●● ●●

●

●●
●

●

●

●
●●●

●●
●●

●
●●●

●●●● ●●●

●

●
●

●●●● ●●
●

●●●●
●

●●
●

●

● ●
●●

●●

●
●

●
●

●

●

● ●
●

●●●●● ●●●

●
●

● ●● ●●
●●

●

●

●● ●● ●●● ●●●● ●

●

●● ●●●●●●●●
● ●

●
●

●●

●
●

● ●●●● ●
●

●●●

●●
● ●

●

●●●● ●●
●●
●

●

●

●●

●

●●
●

●

●●

●

●●●● ●●●●●

●

●

●

●

●

●
●●

●

●

●

●● ●●● ●●

●

●

●
●

●
●

● ● ●
●

●

●
●

●●●● ●

●

● ●●

●

●

●●
●

●
●

●●●
●

●
●

●

● ●●●●

●

●●●●●
●

●●●

●

●●●
●

● ●●●

●

●●● ●●

●

● ●●

●

●●●

●

●●● ●● ●●● ●

●

●●●●● ● ●●●● ●●●●
●●●● ●●●●

●

●●●

●

●●
●

●●●

●

●● ●● ●●●

●
●●●●●●

●●● ●●●● ●●● ● ● ●
●●●●●●

●

● ●
●

●
●

●
●

●

●
●

●●●

●

●●● ●●

●

●

●

●●●● ●●
●

●● ●● ●●●●● ●

●
●

●●●
●● ● ●●

●

●●● ● ●
●

● ●

●

●●●
●●● ●
●

●●

●

●

●

●●●

●

●
●

●
●

●●

●●
●●●● ●●●● ●

●
●

●

●●

●

●

●●

●

●
●

● ●

●

●

●
●

●

●●
●

●● ●●●● ●
●

● ●●

●

● ●●

●

●● ●● ●
●

●
●● ●●

●
●●● ●●●●

●
●●●●● ●

●

●

● ●
●

●●●●
●

●
●

●●●●●●●
●

●
●

●●● ●

●

●●

●
●

●
● ●●●

●

●●●
●

●●

●

●
●●● ● ●●

●

●
●

●●
●●●● ●●

●●●●●

●

●●●● ●
●

●● ●●●●
●

●●
●●

●

●

●

●

●

●

● ●●●● ●

●
●

●●●●●
●●● ●●●● ●●● ●●

●

●●●●●●●●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

im2col
activation
pooling
c2f
bias
softmax
softmax_B
dedb(L)
c2f_B
im2col_B
pooling_B
activation_B

Fig. 7. Measured Time (Points) and Determined Model (Lines) of CUDA
components on TSUBAME-KFC/DL: Only randomly chosen 5% samples
except for first 5 samples are shown for visibility. The x-axis is normalized
with the max amount for each component (eg. 1013 MB for im2col, and 23.4
KB for softmax)

executions as its representative value. Fig. 8 shows the pre-
diction error of cublasSgemm with matrix size (m,n, k) =
(2

2x+1
4 , 2

2y+1
4 , 2

2z+1
4). The third quartile of the prediction error

is 13.6%. However, around the kernel boundary, shown on Fig.
4, prediction error is relatively high, because our model cannot
determine actual kernel and its behavior exactly.

5 10 15 20

6
8
10
12

2
4
6
8
2
4

●

●

●

●

●

●

●

●

●

●

●

●

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %
100 %
110 %

������	�

������	�

������	�

Fig. 8. Prediction Error of cublasSgemm on TSUBAME-KFC/DL

Fig. 9 shows predicted computation time of CNN-A, CNN-
B, and CNN-C. Note that measured time shows average time
of 5 minutes execution, and max NSubbatch is determined by
GPU memory size. Going from NSubbatch = 6 to 7, the mea-
sured time of CNN-A increased discontinuously (Fig. 10). This
is because dedw(2), the most time-consuming component,
calls kernels named scal kernel and sgemm largek lds64 if
NSubbatch = 6, however on NSubbatch = 7 it calls two
sgemm sm35 ldg tn 32x16x64x8x16, which take 0.15 sec
more than that on NSubbatch = 6. Therefore, the proposed
model cannot follow the behavior until NSubbatch gets suffi-
ciently larger so that the model uses measured cublasSgemm
time which is affected by the behavior. In any cases, since
SGEMM components are more time consuming than other
CUDA components, entire prediction error is greatly affected
by cublasSgemm prediction error.

Table VII shows summary of the prediction error of CNN
computation. In all cases average prediction error is lower than
12%.

of Samples �

of GPUs � Time to process one
sample on a GPU�

of GPUs �

Frequency to process
one sample on a GPU�

Time to update
weights�

Staleness due to
Slow GPU iteration�

Staleness due to
Non-blocking update�

Evaluation�

!  The proposed performance model is evaluated on TSUBAME
2.5 and TSUBAME-KFC/DL
!  Up to 64 nodes of TSUBAME 2.5, or 16 nodes of TSUBAME-KFC/DL

are used for evaluation

���

TSUBAME 2.5 � TSUBAME-KFC/DL �
nodes� 1408 � 42 �
CPU � Intel Xeon X5670 x 2� Intel Xeon E5-2620v2 x 2�
GPU � NVIDIA Tesla K20X x 3 � NVIDIA Tesla K80 x 4 �
Network � 4X QDR InfiniBand x 2 � 4X FDR InfiniBand�
Compiler � ICC 14.02 � ICC 14.0.0 �
CUDA � CUDA 7.0 �
MPI� MVAPICH2 2.0rc1 �

Evaluation�
!  Three 15-17 layers CNNs are used for evaluation

!  Coefficients of the model are fitted with CNN-A and subsets of training
configurations (NNode, NSubbatch)

!  Prediction error is measured with CNN-A, B, and C

!  ILSVRC2012 dataset is used for evaluation

�	�

CNN-A� CNN-B � CNN-C�
Input layer size � 396 � 396 � 346 �
conv. layers� 15 � 15 � 17 �
max-pooling� 5 � 5 � 5 �
parameters� 16.1 M� 12.1 M� 12.5 M�
GEMM GFLOP
per sample� 41.0� 100.0� 184.5�

Breakdown of # parameters of three CNNs�
CNN−A CNN−B CNN−C

Pa

ra
m

et
er

s
(1

0^
6)

0
5

10
15 Layer 17

Layer 16
Layer 15
Layer 14
Layer 13
Layer 12
Layer 11
Layer 10
Layer 9
Layer 8
Layer 7
Layer 6
Layer 5
Layer 4
Layer 3
Layer 2
Layer 1

O(Σl ml
2 xl

2) �

O(Σl ml
2 cl

2) �

2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

TSUBAME−KFC/DL

NSubbatch

T C
om

pu
te

G
ra

di
en

t [
s]

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5

0.00
0.05
0.10
0.15
0.20
0.25
0.30

TSUBAME 2.5

NSubbatch

T C
om

pu
te

G
ra

di
en

t [
s]

●

●

●

●

●

●

●

●

Evaluation
Execution Time of Gradient Computation�

!  In all CNNs and NSubbatch, the prediction error was lower than
12% on average

�
�

Measured (Solid) and Predicted (Dashed) Gradient Computation Time
of Three CNNs on Two GPUs�

Relatively high
error due to

GEMM prediction
error�

Measured �

Predicted�

CNN-C �

CNN-B �

CNN-A�

CNN-C �

CNN-B �

CNN-A�

others
ComputeGradient

(NNode, NSubbatch)

T G
PU

 [s
]

0.0

0.2

0.4

0.6

0.8

1.0

(1
,1

)

(1
,4

)

(1
,8

)

(1
,1

1)

(2
,1

)

(2
,4

)

(2
,8

)

(2
,1

1)

(4
,1

)

(4
,4

)

(4
,8

)

(4
,1

1)

(8
,1

)

(8
,4

)

(8
,8

)

(8
,1

1)

(1
6,

1)

(1
6,

4)

(1
6,

8)

(1
6,

11
)

others
ComputeGradient

(NNode, NSubbatch)

T G
PU

 [s
]

0.0

0.2

0.4

0.6

0.8

1.0

(1
,1

)

(1
,4

)

(1
,8

)

(1
,1

1)

(2
,1

)

(2
,4

)

(2
,8

)

(2
,1

1)

(4
,1

)

(4
,4

)

(4
,8

)

(4
,1

1)

(8
,1

)

(8
,4

)

(8
,8

)

(8
,1

1)

(1
6,

1)

(1
6,

4)

(1
6,

8)

(1
6,

11
)

others
Allreduce

(NNode, NSubbatch)

T U
pd

at
e [

s]

0.00
0.05
0.10
0.15
0.20
0.25
0.30

(1
,1

)

(1
,4

)

(1
,8

)

(1
,1

1)

(2
,1

)

(2
,4

)

(2
,8

)

(2
,1

1)

(4
,1

)

(4
,4

)

(4
,8

)

(4
,1

1)

(8
,1

)

(8
,4

)

(8
,8

)

(8
,1

1)

(1
6,

1)

(1
6,

4)

(1
6,

8)

(1
6,

11
)

others
Allreduce

(NNode, NSubbatch)

T U
pd

at
e [

s]

0.00
0.05
0.10
0.15
0.20
0.25
0.30

(1
,1

)

(1
,4

)

(1
,8

)

(1
,1

1)

(2
,1

)

(2
,4

)

(2
,8

)

(2
,1

1)

(4
,1

)

(4
,4

)

(4
,8

)

(4
,1

1)

(8
,1

)

(8
,4

)

(8
,8

)

(8
,1

1)

(1
6,

1)

(1
6,

4)

(1
6,

8)

(1
6,

11
)

Evaluation
Iteration Time of GPU/Update Thread�

!  The prediction error of GPU thread iteration time was less than
7%, 11% on average respectively

���

Measured (Left) and Predicted (Right) Iteration Time
of CNN-A on TSUBAME-KFC/DL �

(NNode, NSubbatch) �

TGPU [s] �

(NNode, NSubbatch) �

TUpdate [s] �GPU Thread � Update Thread�Measured � Predicted�

MPI
all-reduce�

Gradient
computation�

Evaluation
Distribution of Mini-batch Size and Staleness�

!  Our model successfully predicts the distribution of mini-batch size
and staleness
!  The average prediction error was 9% and 19% respectively�

���

Distribution of mini-batch size and staleness of CNN-A on TSUBAME-KFC/DL �

100 200 300 400 500 600
0.

00
0.

10

Pr
ob

ab
ilit

y
● ● ●● ● ●

NSubbatch = 1

0 2 4 6 8 10

0.
0

0.
4

0.
8

●●●

NSubbatch = 1

100 200 300 400 500 600

0.
00

0.
06

0.
12

Pr
ob

ab
ilit

y

● ● ●● ● ●

NSubbatch = 4

0 2 4 6 8 10

0.
0

0.
4

0.
8

●●●

NSubbatch = 4

0 100 200 300 400 500 600

0.
00

0.
10

Pr
ob

ab
ilit

y

● ● ●● ● ●

NSubbatch = 8

0 2 4 6 8 10
0.

0
0.

4
0.

8
●●●

NSubbatch = 8

0 100 200 300 400 500 600

0.
00

0.
10

NMinibatch

Pr
ob

ab
ilit

y

● ● ●● ● ●

NSubbatch = 11

0 2 4 6 8 10

0.
0

0.
4

0.
8

NStaleness

●●●

NSubbatch = 11

●

●

●

NNode = 4 (measured)
NNode = 4 (predicted)
NNode = 4 (predicted_avg)
NNode = 8 (measured)
NNode = 8 (predicted)
NNode = 8 (predicted_avg)
NNode = 16 (measured)
NNode = 16 (predicted)
NNode = 16 (predicted_avg)

●

●

●

NNode = 4 (measured)
NNode = 4 (predicted)
NNode = 8 (measured)
NNode = 8 (predicted)
NNode = 16 (measured)
NNode = 16 (predicted)

100 200 300 400 500 600

0.
00

0.
10

Pr
ob

ab
ilit

y

● ● ●● ● ●

NSubbatch = 1

0 2 4 6 8 10
0.

0
0.

4
0.

8
●●●

NSubbatch = 1

100 200 300 400 500 600

0.
00

0.
06

0.
12

Pr
ob

ab
ilit

y

● ● ●● ● ●

NSubbatch = 4

0 2 4 6 8 10

0.
0

0.
4

0.
8

●●●

NSubbatch = 4

0 100 200 300 400 500 600

0.
00

0.
10

Pr
ob

ab
ilit

y

● ● ●● ● ●

NSubbatch = 8

0 2 4 6 8 10

0.
0

0.
4

0.
8

●●●

NSubbatch = 8

0 100 200 300 400 500 600

0.
00

0.
10

NMinibatch

Pr
ob

ab
ilit

y

● ● ●● ● ●

NSubbatch = 11

0 2 4 6 8 10

0.
0

0.
4

0.
8

NStaleness

●●●

NSubbatch = 11

●

●

●

NNode = 4 (measured)
NNode = 4 (predicted)
NNode = 4 (predicted_avg)
NNode = 8 (measured)
NNode = 8 (predicted)
NNode = 8 (predicted_avg)
NNode = 16 (measured)
NNode = 16 (predicted)
NNode = 16 (predicted_avg)

●

●

●

NNode = 4 (measured)
NNode = 4 (predicted)
NNode = 8 (measured)
NNode = 8 (predicted)
NNode = 16 (measured)
NNode = 16 (predicted)

Mini-batch size � Staleness �

Measured �

Predicted�

4 nodes�
8 nodes�

16 nodes� Measured �
Predicted�

Evaluation
Parameter Search for Target Mini-batch Size�

!  Our model steadily chose the fastest configuration from subset
for arbitrary target mini-batch size 138±25%�

���

NNode� NSubbatch � Measured � Predicted �
KFC� 8 � 8 � 2025 � 1779 �
KFC� 8 � 11 � 2316 � 2226 �
T2.5 � 16 � 5 � 2725 � 2614 �
T2.5 � 16 � 4 � 2910 � 2840 �
T2.5 � 32 � 1 � 3178 � 3227 �
T2.5 � 16 � 3 � 3276 � 3257 �

10 20 30 40

1
2

3
4

5

NNode

N
Su

bb
at

ch

●

50
00

0
s

20
00

0
s

10
00

0
s

50
00

 s

20
00

 s

10 20 30 40
2

4
6

8

NNode

N
Su

bb
at

ch ●

10
00

0
s

50
00

 s

20
00

 s

10
00

 s

50
0

s

NMinibatch = 100

NMinibatch = 101

NMinibatch = 102

NMinibatch = 103

NMinibatch = 104

NStaleness = 1
NStaleness = 2
NStaleness = 3
NStaleness = 4
NStaleness = 5
NStaleness = 6
NStaleness = 7

Predicted Epoch Time (Contour), Mini-batch
Size (Brightness) and Staleness (Hue) of CNN-A

on TSUBAME-KFC/DL �

Shortest epoch time�

Predicted Ranking of Configuration for
Shortest Epoch Time[s] of CNN-A on Two

Supercomputers �

10 20 30 40

1
2

3
4

5

NNode

N
Su

bb
at

ch

●

50
00

0
s

20
00

0
s

10
00

0
s

50
00

 s

20
00

 s

10 20 30 40

2
4

6
8

NNode

N
Su

bb
at

ch ●

10
00

0
s

50
00

 s

20
00

 s

10
00

 s

50
0

s

NMinibatch = 100

NMinibatch = 101

NMinibatch = 102

NMinibatch = 103

NMinibatch = 104

NStaleness = 1
NStaleness = 2
NStaleness = 3
NStaleness = 4
NStaleness = 5
NStaleness = 6
NStaleness = 710 20 30 40

1
2

3
4

5

NNode

N
Su

bb
at

ch

●

50
00

0
s

20
00

0
s

10
00

0
s

50
00

 s

20
00

 s

10 20 30 40

2
4

6
8

NNode

N
Su

bb
at

ch ●

10
00

0
s

50
00

 s

20
00

 s

10
00

 s

50
0

s

NMinibatch = 100

NMinibatch = 101

NMinibatch = 102

NMinibatch = 103

NMinibatch = 104

NStaleness = 1
NStaleness = 2
NStaleness = 3
NStaleness = 4
NStaleness = 5
NStaleness = 6
NStaleness = 7

NNode �

N
Su

b
b

a
tc

h
�

Evaluation
Performance Prediction for Future Hardware�

!  We predicted the optimal configurations within mini-batch size
138±25% for future hardware improvement
!  FP16: Computation time is halved and max NSubbatch is doubled

!  EDR IB: Communication time of all-reduce is divided by 12.5/7

!  4xFDR InfiniBand (7 GB/s) 4xEDR InfiniBand (12.5 GB/s)

!  Interconnect performance is important as well as GPU
performance to accelerate DL�

���

NNode� NSubbatch �
Average

mini-batch size � Epoch time[s] Speedup

Baseline� 8 � 8 � 165.1� 1779 � - �
FP16� 7 � 22 � 170.1� 1462 � 1.22�
EDR IB � 12 � 11 � 166.6� 1245 � 1.43�
FP16 + EDR IB� 8 � 15 � 171.5� 1128 � 1.58�

The Optimal Predicted Configurations of CNN-A on TSUBAME-KFC/DL �

Related Work �

!  Performance modeling for parameter-server based DL system
on CPU cluster [Yan et al, SIGKDD, 2015]
!  The authors proposed performance model and optimizer to

minimize DNN training time for CPU cluster

!  Our performance model predicts distribution of mini-batch size
and staleness as well as training time

!  Relation between mini-batch size, staleness and
generalization error [Gupta et al, 2015]
!  The authors proposed an asynchronous parallel DL system Rudra

!  The authors empirically showed that generalization error of trained
DNN is affected by staleness as well as mini-batch size

!  Universal knowledge about relation among mini-batch size,
staleness, generalization error and training time is still unclear�

���

Conclusion and Future Work�

!  Conclusion
!  Our model predicts epoch time, average mini-batch size and

staleness with 5%, 9%, 19% error in average respectively on several
supercomputers

!  Our model steadily choose the fastest machine configuration that
nearly meets a target mini-batch size

!  Future Work
!  Improving the model to support model-parallelism and more

general DNN architecture

!  Combining empirical training results for more advanced
prediction

���

