Predicting Statistics of Asynchronous SGD Parameters for a Large-Scale Distributed Deep Learning System on GPU Supercomputers

Yosuke Oyama^{1,a}) Akihiro Nomura¹ Ikuro Sato² Hiroki Nishimura³ Yukimasa Tamatsu³ Satoshi Matsuoka¹

1 Tokyo Institute of Technology

2 DENSO IT LABORATORY, INC.

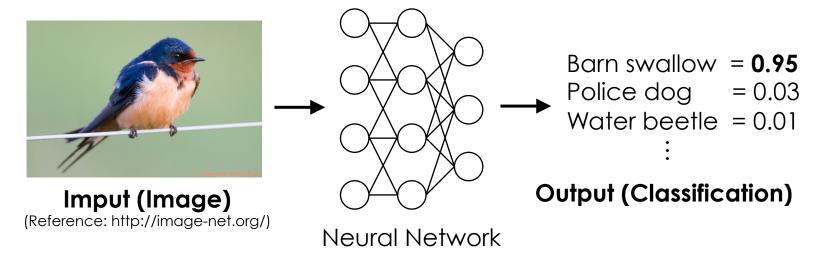
3 DENSO CORPORTATION

a) oyama.y.aa@m.titech.ac.jp

Background Deep Learning (DL)

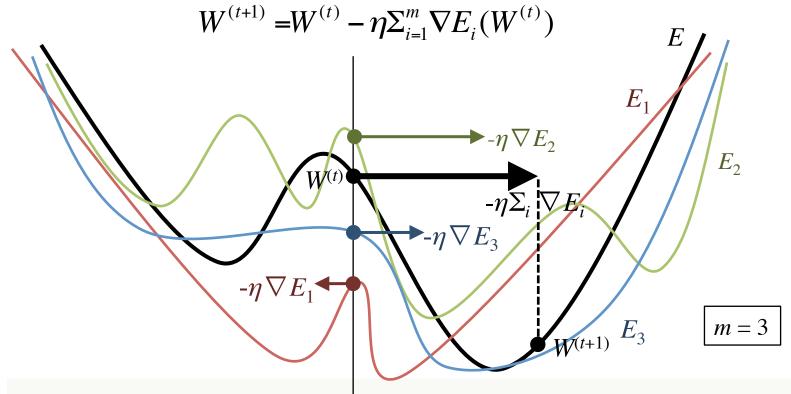
A machine learning technique using "Deep" Neural Network

- DL is achieving state-of-the-art in large machine learning area
- Training DNN with huge dataset requires large scale computation
 - eg. 15-layer CNN training takes 8.2 days on 16 nodes (48 GPUs) of TSUBAME2.5
 - Researchers have to train DNN for several times to optimize DNN structure and hyper-parameters by hand



Background Stochastic Gradient Descent

- An optimization method to update NN weights $W^{(t)}$ with summation of gradient ∇E_i of *m* samples (i.e. mini-batch)
 - Suitable for DL, in which computing global gradient ∇E requires hundreds PFLOP

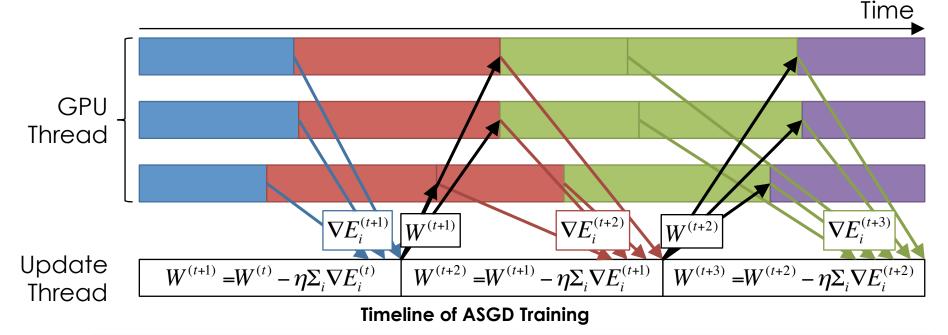


Background Asynchronous Stochastic Gradient Descent (ASGD)

GPU threads independently compute gradient of distinct samples, while update threads update DNN weights asynchronously

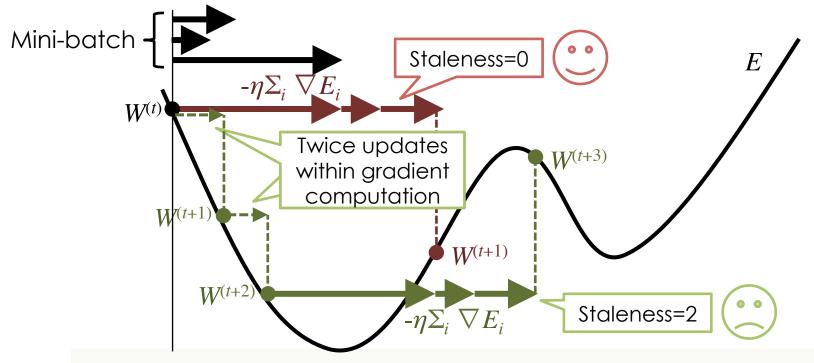
ASGD may speed-up the training

ASGD may produce worse generalization error



Background Mini-batch Size and Staleness

- Staleness: # of updates done within one gradient computation
- Existing researches showed that the error is increased by larger mini-batch size and staleness
 - There was no way of knowing these statistics in advance



Approach and Contribution

- Approach: Proposing a performance model for an ASGD deep learning system, which considers probability distribution of minibatch size and staleness
 - Takes CNN structure and machine specifications as input
 - Predicts time to sweep entire dataset (epoch time) and the distribution of the statistics

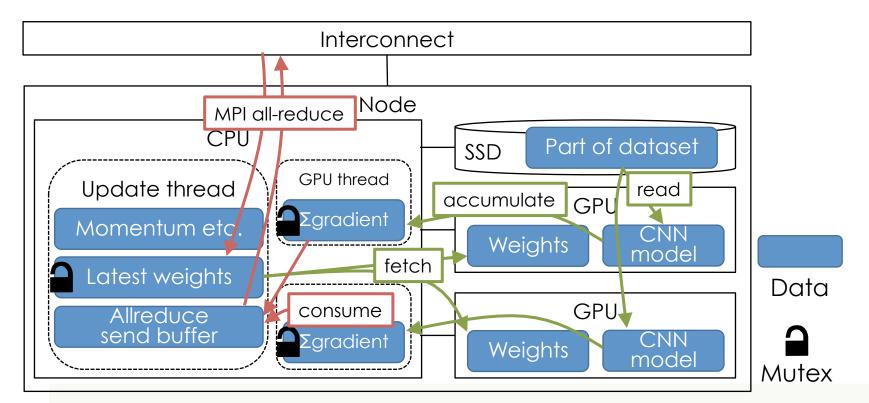
Contribution

- Our model predicts epoch time, average mini-batch size and staleness with 5%, 9%, 19% error in average respectively on several supercomputers
- Our model steadily choose the fastest machine configuration that nearly meets a target mini-batch size
- Our model predicts how DL scales with upcoming hardware specification
 - FP16, EDR InfiniBand

SPRINT Overview

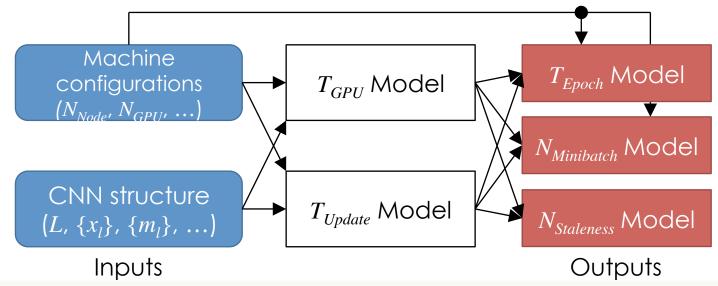
SPRINT is a data-parallel ASGD application to train CNN with GPUs

- GPU threads compute gradient of randomly-picked samples and accumulate it to the host memory
- Update threads execute MPI all-reduce to update the weights



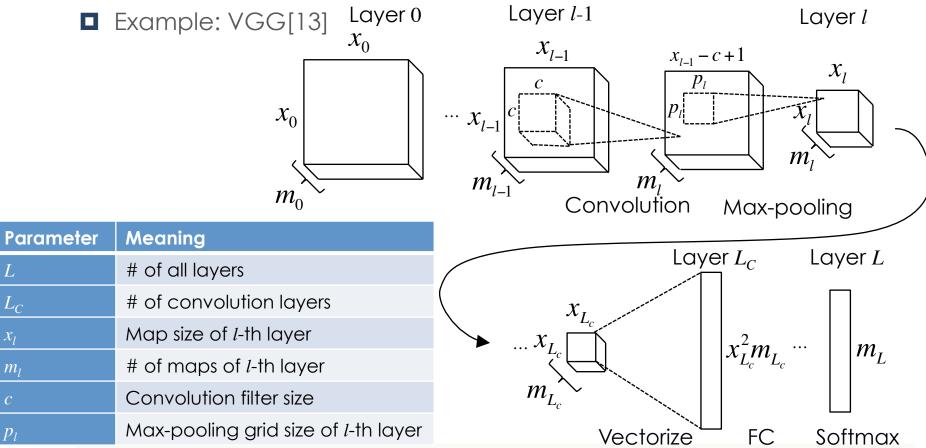
Proposed Performance Model Overview

- 1. Takes # of nodes (N_{Node}) , # of GPUs (N_{GPU}) , CNN structure as input parameters
- 2. Predicts execution time of one iteration of GPU threads and update threads ($T_{GPU'}$, T_{Update})
- 3. Predicts
 - epoch time (T_{Epoch}) as a constant
 - Mini-batch size $(N_{Minibatch})$ and staleness $(N_{Staleness})$ as stochastic variables



Proposed Performance Model CNN Structure

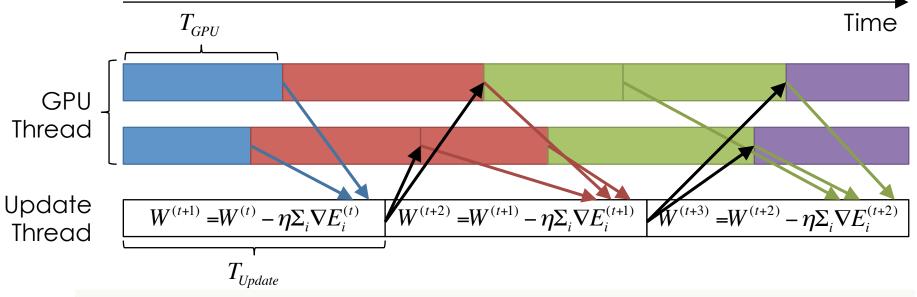
The model supports CNNs with convolution layers, optional max-pooling and fully-connected layers



Proposed Performance Model Execution Time of Thread Iteration

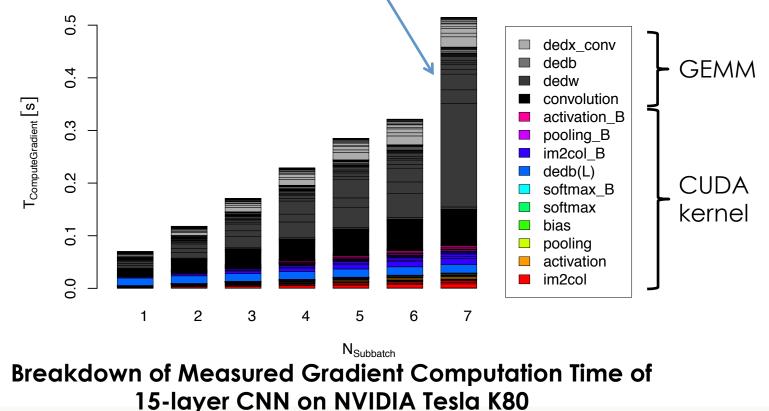
- Execution time of thread iteration is divided into several tiny sub-models, each representing time complexity of its part
 - Coefficients are fitted with the least squares method

$$\begin{split} T_{GPU} &= T_{LoadImage} + T_{ComputeGradient} + T_{UpdateGradient} + \dots \\ T_{Update} &= T_{SumGradient} + T_{Allreduce} + T_{UpdateWeights} + \dots \end{split}$$



Proposed Performance Model Execution Time of Gradient Computation

- One gradient computation iteration is consisted of various CUDA kernels and SGEMM
 - 15-layer CNN calls more than 100 kernels/GEMMs per iteration



Proposed Performance Model Execution Time of Gradient Computation

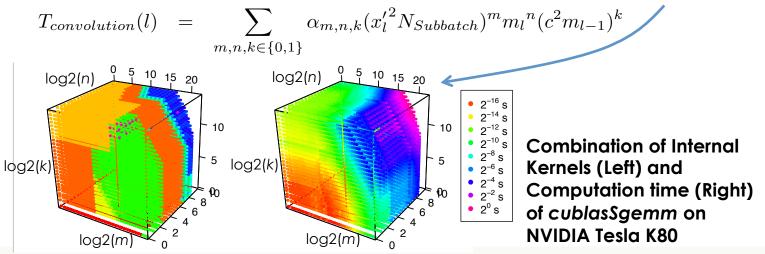
Computation time is modeled with summation of consisting kernels

$$T_{ComputeGradient} = \sum_{l=1}^{L_c} \{T_{im2col}(l) + T_{convolution}(l) + T_{activation}(l)\} + \cdots$$

Model for CUDA Kernel: Linear function of its computation complexity
Coefficients are fitted with

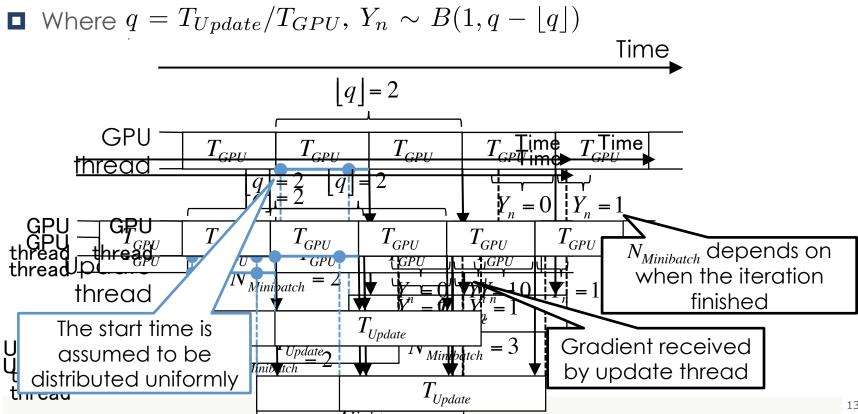
$$T_{im2col}(l) = \alpha x_l'^2 c^2 m_{l-1} N_{Subbatch} + \beta$$
 the least square method

■ Model for GEMM: Interpolation of measured computation time



Proposed Performance Model Predicting Distribution of Mini-batch Size

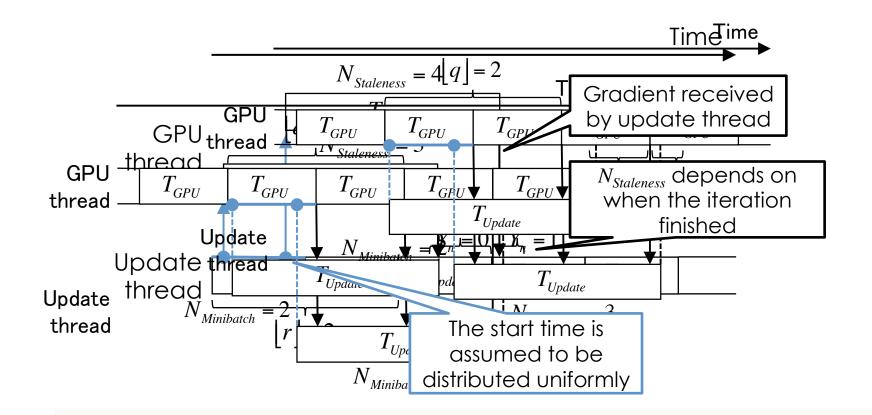
$$\square N_{Minibatch} = N_{Subbatch} \sum_{n=1}^{N_{Node} \times N_{GPU}} (Y_n + \lfloor q \rfloor)$$

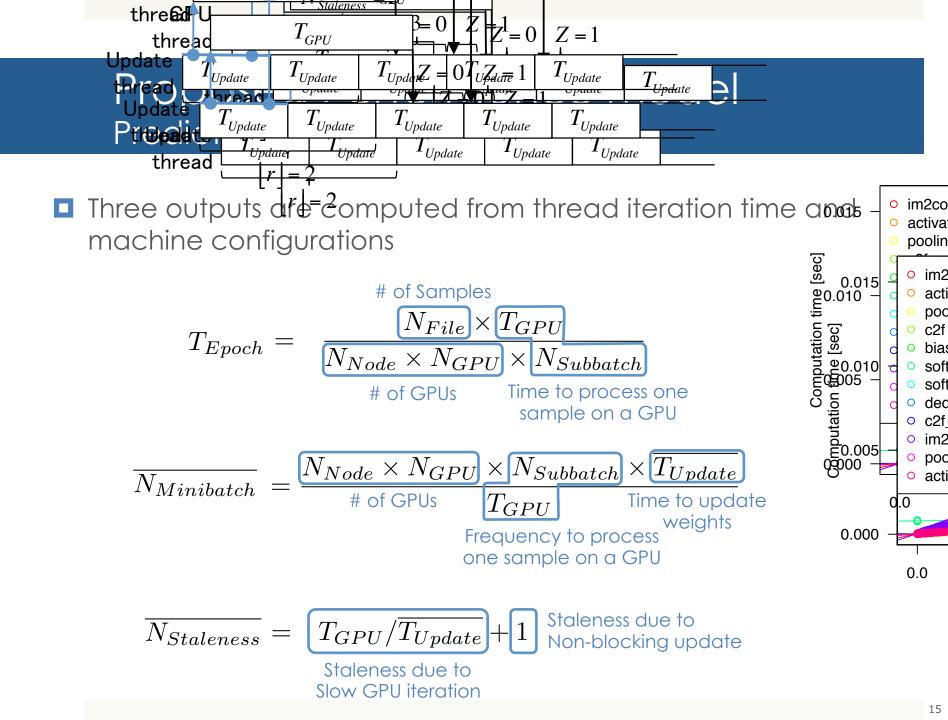


Proposed Performance Model Predicting Distribution of Staleness

 $\square N_{Staleness} = Z + \lfloor r \rfloor + 1$

• Where $r = T_{GPU}/T_{Update}, Z \sim B(1, r - \lfloor r \rfloor)$





Evaluation

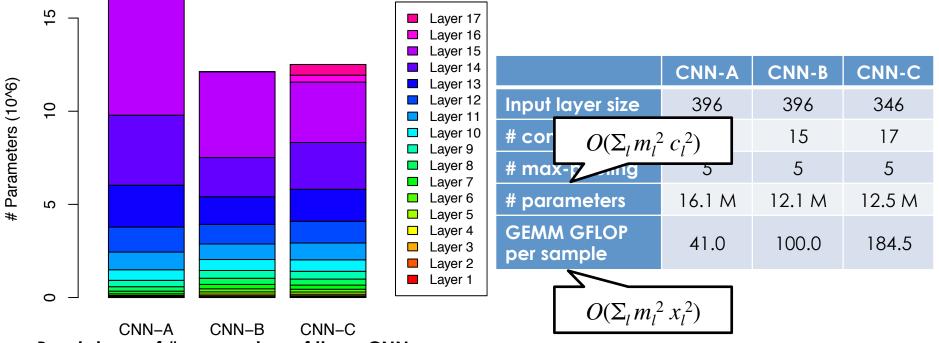
- The proposed performance model is evaluated on TSUBAME 2.5 and TSUBAME-KFC/DL
 - Up to 64 nodes of TSUBAME 2.5, or 16 nodes of TSUBAME-KFC/DL are used for evaluation

	TSUBAME 2.5	TSUBAME-KFC/DL			
# nodes	1408	42			
CPU	Intel Xeon X5670 x 2	Intel Xeon E5-2620v2 x 2			
GPU	NVIDIA Tesla K20X x 3 NVIDIA Tesla K80				
Network	4X QDR InfiniBand x 2	4X FDR InfiniBand			
Compiler	ICC 14.02	ICC 14.0.0			
CUDA	CUDA 7.0				
MPI	MVAPICH2 2.0rc1				

Evaluation

Three 15-17 layers CNNs are used for evaluation

- Coefficients of the model are fitted with CNN-A and subsets of training configurations (N_{Node} , $N_{Subbatch}$)
- Prediction error is measured with CNN-A, B, and C
- ILSVRC2012 dataset is used for evaluation



Breakdown of # parameters of three CNNs

Evaluation Execution Time of Gradient Computation

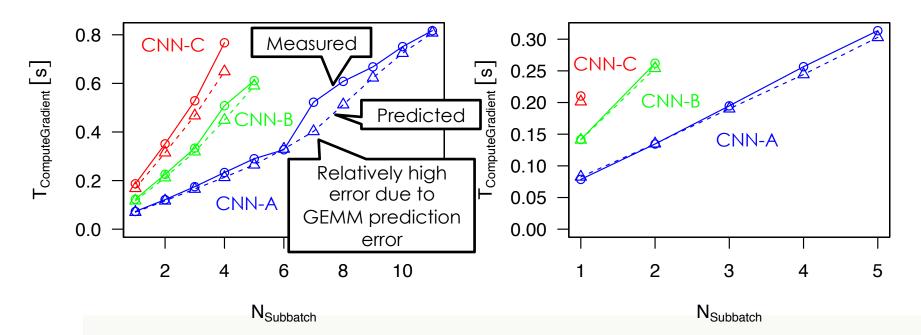
In all CNNs and $N_{Subbatch}$, the prediction error was lower than 12% on average

Measured (Solid) and Predicted (Dashed) Gradient Computation Time of Three CNNs on Two GPUs

TSUBAME-KFC/DL

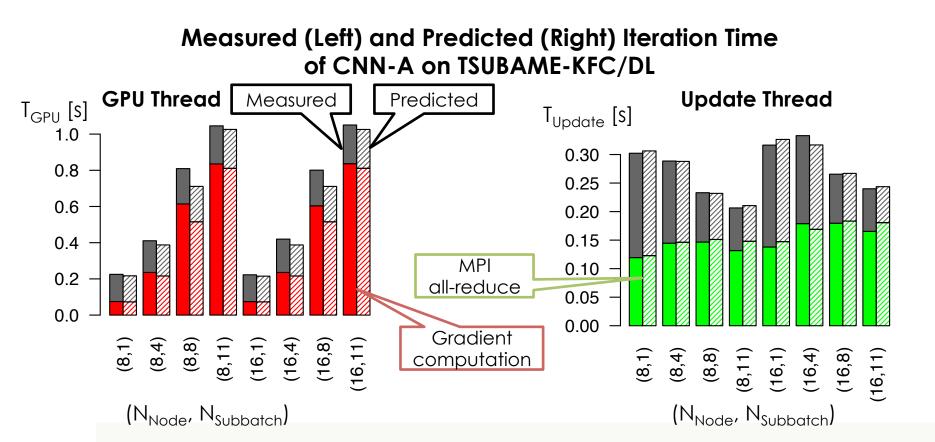
TSUBAME 2.5

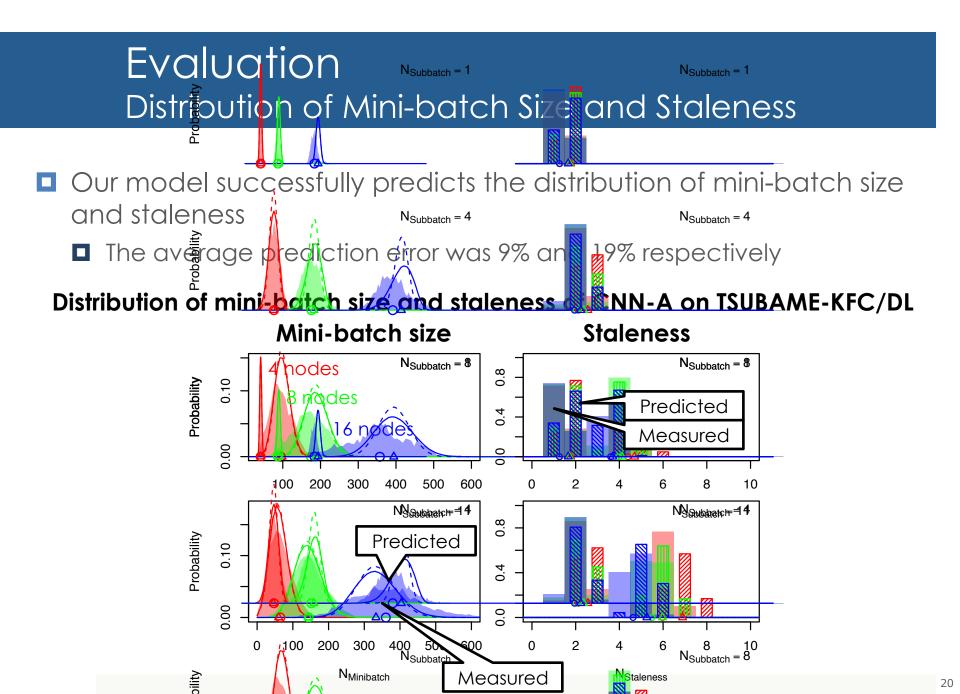
18

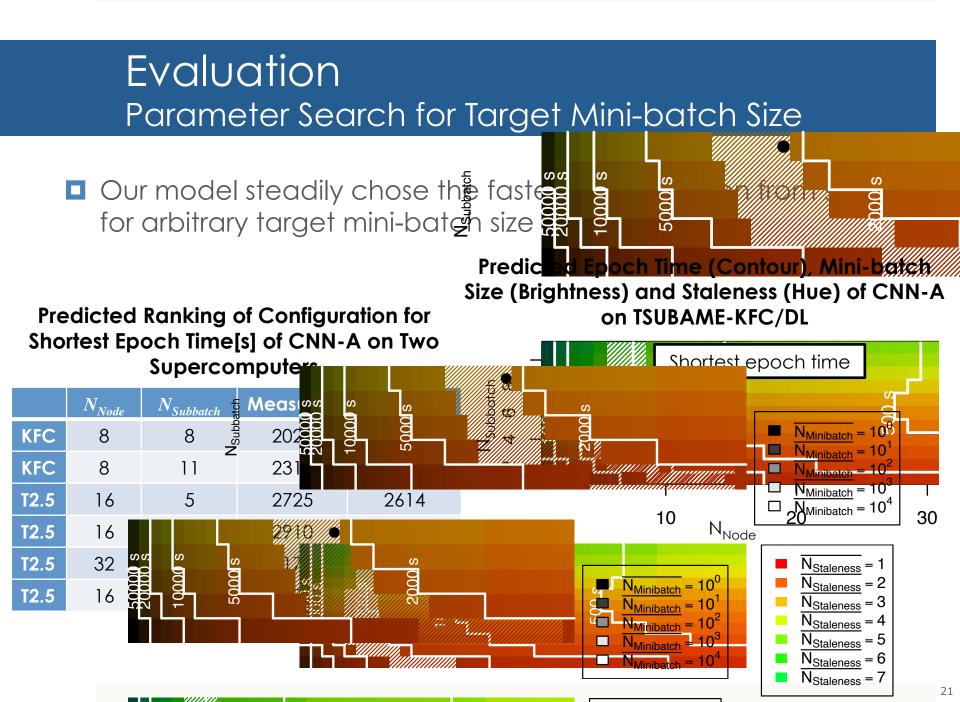


Evaluation Iteration Time of GPU/Update Thread

The prediction error of GPU thread iteration time was less than 7%, 11% on average respectively







Evaluation Performance Prediction for Future Hardware

- We predicted the optimal configurations within mini-batch size 138±25% for future hardware improvement
 - **FP16**: Computation time is halved and max $N_{Subbatch}$ is doubled
 - **EDR IB**: Communication time of all-reduce is divided by 12.5/7
 - 4xFDR InfiniBand (7 GB/s) $\rightarrow 4xEDR$ InfiniBand (12.5 GB/s)
- Interconnect performance is important as well as GPU performance to accelerate DL

The Optimal Predicted Configurations of CNN-A on TSUBAME-KFC/DL

	$N_{\scriptscriptstyle Node}$	$N_{\it Subbatch}$	Average mini-batch size	Epoch time[s]	Speedup
Baseline	8	8	165.1	1779	-
FP16	7	22	170.1	1462	1.22
EDR IB	12	11	166.6	1245	1.43
FP16 + EDR IB	8	15	171.5	1128	1.58

Related Work

- Performance modeling for parameter-server based DL system on CPU cluster [Yan et al, SIGKDD, 2015]
 - The authors proposed performance model and optimizer to minimize DNN training time for CPU cluster
 - Our performance model predicts distribution of mini-batch size and staleness as well as training time
- Relation between mini-batch size, staleness and generalization error [Gupta et al, 2015]
 - The authors proposed an asynchronous parallel DL system Rudra
 - The authors empirically showed that generalization error of trained DNN is affected by staleness as well as mini-batch size
 - Universal knowledge about relation among mini-batch size, staleness, generalization error and training time is still unclear

Conclusion and Future Work

Conclusion

- Our model predicts epoch time, average mini-batch size and staleness with 5%, 9%, 19% error in average respectively on several supercomputers
- Our model steadily choose the fastest machine configuration that nearly meets a target mini-batch size

Future Work

- Improving the model to support model-parallelism and more general DNN architecture
- Combining empirical training results for more advanced prediction